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Abstract

By answering a question of A. Georgakopoulos, we generalise a result stating that the
automorphism group of the intersection graph of the chords of the 1-sphere is isomorphic
to the group of homeomorphisms of the 1-sphere to higher dimensions. We subsequently
investigate the automorphism groups of intersection graphs of more general classes of
curves on the 2-sphere and demonstrate that the class of Jordan curves is sufficient to
recover the entire automorphism group of the 2-sphere. We conclude by providing ex-
amples of an important invariant, which we term the region graph, used throughout this
dissertation. We also examine the properties of such graphs on the classes of curves

investigated in earlier chapters.



Chapter 1

Introduction

In a recent paper, A. Georgakopoulos has provided a natural graph C, such that Aut(C)
is isomorphic to Aut(S!), the group of homeomorphisms of the 1-sphere [I]. The study
of Aut(S!) is a classical topic, blending many areas of study; we refer the reader to
several surveys and monographs of the area for further reading [2][3][4]. The graph C
is termed the circle graph; the graph whose vertex set consists of the chords of S' and
where two chords share an edge if and only if they intersect on or within S'. Such a
graph is an intersection graph, a graph whose vertices are objects, and edges exist only
between those objects which have non-empty intersection. We again refer the reader to
several summary texts which have been written on the topic of intersection graphs [5][6].
It is natural to consider higher-dimensional analogues of this problem. In particular,
we can consider the sphere graph, C%, of the d-sphere, where C! = C. The vertices of
such a graph are the chords of S%, where a chord is the non-empty intersection of a
non-tangential d-plane with the closed ball D4t in R, Georgakopoulos proposed the

following question in the aforementioned paper, which this dissertation seeks to answer:
Question 1 Is Aut(S?) isomorphic to Aut(C?) for every d > 17

We show that this is false for d > 2 and that Aut(C?) is in fact isomorphic to the
group of M&bius transformations of the d-sphere, which we denote M&h(S9), for d > 2.

Many readers will be familiar with Mobius transformations of @, but may be less familiar
with their higher-dimensional relatives. We introduce the reader to such transformations
of R? in Chapter [2, blending material from several texts to provide a solid overview of
these maps. We proceed by demonstrating how such maps may be transferred to the

d-sphere via stereographic projection, showing that such projections are in fact Mobius



transformations themselves. We encounter various properties of Mobius transformations
that prove useful in answering Question [1| and end by showing a characterisation of
Mobius transformations via chordal spheres. A chordal sphere of R?is a (d — 1)-sphere
or d-plane; under stereographic projection, these are sent to chords of S+, which makes
clear their name.

In all later chapters most material will constitute original work, except where other-

wise credited.

In Chapter [3| we prove our stated answer to Question [I We follow a method of proof
inspired by that of the original result and introduce several useful invariants under auto-
morphisms of C¢, including what we term region graphs. Such invariants heavily restrict
the possible symmetries of the sphere graphs and allow us to prove many unexpected
properties of automorphisms of C?. For example, such automorphisms distinguish be-
tween types of intersection, despite this information not being explicitly encoded in C°.
We further show that such invariants can be extended to more general classes of simple
closed curve.

In order to construct an isomorphism between the two groups, much like Geor-
gakopoulos, we build boundary cliques - the induced subgraphs on those vertices of C%
that contain a given point on S?. We demonstrate that the action of an automorphism
h € C% on boundary cliques provides a well-defined map of points on S? and thereby
construct a homeomorphism. We end by demonstrating a homeomorphism constructed
in this manner must satisfy a characterisation of M6bius transformations proved in Lem-
mas [2.5] and We construct our method of proof to also cover the case of d = 1, and
hence we are able to provide an alternative method of proof to that of Georgakopoulos.
We consequently demonstrate that the methods used in proving this result provide a
purely combinatorial way to extend the action of the Mdbius group to the interior of S¢.
We conclude the chapter by making several observations on the structure of C¢ and its

automorphism group.

In Chapter [4] we look to find a natural graph whose automorphism group is isomorphic to
Aut(S?), to recover a result analogous to that of Georgakopoulos in higher dimensions.
We prove that the intersection graph J whose vertices are the Jordan curves on S? is
such a graph, by extending methods of proof developed through the prior chapter. A
Jordan curve is the image of an injective and continuous map from S! to S?. We discuss
the pathological nature of many such curves and give a summary of several crucial re-

sults which allow us to tackle the problems these curves present.



In Chapter [5| we focus on the intersection graphs S* of the C* Jordan curves on S?,
where k € N2 U {oo}. We provide a brief summary of smooth manifolds to justify our
analysis of such classes of simple closed curves. We show that the subgroup of Aut(S?)
isomorphic to Aut(S¥) is in fact larger than the subgroup of C* homeomorphisms of
the 2-sphere, by augmenting a recent proof of Le Roux and Wolff [7]. In doing so we
demonstrate that there are non-C* homeomorphisms which preserve all simple closed

C* curves.

Finally, in Chapter [6] we explore region graphs further, demonstrating various prop-
erties of these graphs in different dimensions. Highlighting some unexpected cases of
region graphs that arise when considering curves in J or S*, we suggest that the case
for circular curves on S? is the most tractable. We classify all finite region graphs on
two curves in J and show that such region graphs are perfect. By this classification we
demonstrate quite how complex region graphs may become, even on small numbers of
curves, when considering more general classes of curve. We demonstrate that for any
finite number of Jordan curves on S?, there are planar region graphs, and provide ex-
amples of region graphs that are not perfect. We classify all region graphs on 0 <n <3
circles on S?, demonstrating the difficulty of such a task for larger collections. We then
define a graph class Circleg, which contains all region graphs on collections of circles
with maximum degree k € NZ°. We consider the degree of a circle to be its degree within
the corresponding region graph. We end by characterising Circleg for k£ = 0,1,2 and
demonstrate an iterative process for constructing any graph in Circleg from the single

vertex graph.



Chapter 2

(General Mobius transformations

and their characterisations

In this chapter we focus on the d-dimensional sphere S¢ ¢ R%! with the Euclidean
metric. We remind the reader of the extended reals, Ré = RYU{oc} and demonstrate that
they are homeomorphic to S¢ via stereographic projection. We introduce the notions of
Mobius transformations, the maps R — Rd generated by reflections in chordal spheres.
In particular we focus on certain properties and characterisations of these maps which
we make use of in later chapters. The content of this chapter largely follows Chapter 3
of The Geometry of Discrete Groups by Beardon [8], Chapter 3 of An Introduction to
the Theory of Higher-Dimensional Quasiconformal Mappings by Gehring, Martin and
Palka [9] and Inversive Geometry by J.B. Wilker [10].

2.1 Reflections, inversions and chordal spheres

The core building blocks of M6bius transformations in higher dimensions are reflections

in spheres and planes.

Definition 2.1 (Reflections) We denote by S*~!(a,r) = {y € R%: |y—a| = r} the sphere
with centre a and radius 7. We will denote the unit sphere in R% dimensions by S~1. We
define the closed disc with centre a and radius r as D%(a,r) = {y € R?: |y —a| < r}, and
the analogous open disc as the interior of the closed disc. The reflection (or inversion)

in S 1(a,r) of a point x € R is defined as:

R(z)=a+ (M)z(@«—a) (2.1)



In the special case of S¥™1, R(z) = z/|z|?>. We let 2* = x/|z|?. Ergo, we can reformulate

equation [2.] as:
R(z) = a+r*(z — a)*, (2.2)

where we define R(c0) = a and R(a) = oo to define an inversion on the whole of R,
The reflection of a point z € R? in the plane P(a,t) := {y € R?: (y,a) = t} where
(+,+) is the standard dot product is defined as:

R(z) =z —2({(z,a) — t)a™, (2.3)

and we define R(0c0) = oo to define a reflection on R,

In both cases a quick check shows that R%(z) = x and so R is 1-1 on R, and
that R(x) = z if and only if z € S™(a,r) or € P(a,t) respectively. Thus both of
these maps satisfy the properties we would expect from a reflection. Geometrically, an
inversion in a sphere can be thought of as mapping a point z € R4 \ {a} to the point
R(z) lying on the Euclidean ray from a through z satisfying |R(x) — a| - |x — a| = 7. Tt
interchanges the open disc int(D%(a,r)) and R\ D%(a, r) while preserving S¥~!(a,r). A
reflection in a plane P(a,t) can be thought of as taking a point x € R? and mapping it to
the point R(x) such that P(a,t) forms the perpendicular bisector of the line between the
two points. Again, it interchanges the two partitions of R?. We will refer to reflections
in spheres as inversions, and reserve the term “reflection” for those in planes.

These may seem like fundamentally different operations, however we can unify these

two methods of reflection via chordal spheres.

Definition 2.2 (Chordal spheres) A subset X in R? is a chordal sphere if it is a Euclidean
sphere in R? or if ¥ = P U {co} where P is a (d — 1)-dimensional hyperplane.

In general, a chordal sphere ¥ can be expressed as:
¥: alz)? — 2(b,x) + ¢ =0, (2.4)

where a,c € R, b € R% and ac < |b|2. We also require that oo is counted as a solution if

and only if ¢ = 0.

One should think of the chordal spheres through oo as those infinitely large spheres.
The name “chordal” is certainly suggestive, and we will see why this name is suitable
in Let us then denote the reflection in a particular chordal sphere as Ry. Having

done so, we are now ready to define the Mobius transformations of R



Definition 2.3 (Mobius transformations) A Mobius transformation is a finite com-
position of inversions in spheres and reflections in planes. Equivalently, it is a finite

composition of reflections Ry in chordal spheres.

The composition of two Md&bius transformations is again a Mobius transformation.
For = RioRso---0Ry,, ' =RpoRy_10---0Ry. Finally id = Ro R and so the

identity is a Mobius transformation. This motivates the following:

Definition 2.4 (Md&bius Group) The Mdébius group Méb(d) is the group of all Mdbius

transformations R? — R,
We now make a quick comment on the structure of Méb(d).

Remark Let us define O(1,d) as the collection of (d + 1) x (d 4 1) invertible matrices
that preserve the quadratic form ¢(z,r) = 22 — (#? + - -+ + 22), where z € R4, That
is to say, q(z,x) = q(zA,zA) for any A € O(1,d). These matrices form a group under
matrix multiplication, and one may show that the collection of matrices A € O(1,d)
with agp > 0 forms a subgroup, denoted O"(1,d) - in fact O(1,d) is a special example
of a generalised orthogonal group [I1]. We will omit proof of these facts, but proofs
may be found in both [8] and [9]. Indeed, both books proceed to show that Mob(d) is
isomorphic as a topological group to OT(1,d + 1), proof of which we shall also omit.

We now provide several examples of Mobius transformations.

2.1.1 Examples of Mobius transformations

Firstly, all dilations of R? are Mébius. For f =Xz, f = Ro Ry where Ry is the inversion
in S%71, and R is the inversion in S¥~1(0, V).

Secondly, all translations of R? are Mabius. If we have f(z) = z + a, then we have
f = R10o Ry, where R; is the reflection in the plane P;: (a,z) = 0 and Ry is the reflection
in Py: {a,r) = |a]?/2.

Both of the above can be proven through simple calculations using the definitions of
reflections and inversions.

Thirdly, and less obviously, all orthogonal linear transformations of R% are Mébius,

which we shall now prove. We denote the orthogonal group of dimension d as O(d).

Lemma 2.1. Any U € O(d) can be represented as a composition of d or fewer reflections

in (d — 1)-planes that pass through the origin.



Proof. If U is the identity, then U = R o R for any such reflection, and so we assume
U # I. We now provide an iterative construction for transformations Vi, Vs, ...,V in
O(d), where each V; is either the identity I or a reflection as described in the statement
of the lemma. The V; are constructed so that for £ = 1,2,...,d the transformation
Up = VipVi_1... VU fixes the vectors ey, es,...,ex. Given this, we may then conclude
that Uy = I and so U = V1 V,...Vy, where we recall that V;*l = V;. This is exactly a
composition of d or fewer reflections in (d — 1)-planes through the origin.

Let us now describe the construction of such reflections. Let by = U(e;) — e1. If
by = 0 then take Vi = I otherwise let V; be the reflection in P; : (by,2) = 0. Then in
the second case, U(e1) +e1 € Py as

<b1,U(€1) + €1> = <U(61) — 61,U(61) + 61> = |U(€1)|2 — |61‘2 =1-1=0.

Thus U; = V41U fixes e; in both cases; if by = 0 then Ui(e1) = U(e1) = e;. If instead
b1 # 0, then

Ui(er) = Vi(U(e1)) = Vi (U(el) +2e1 + b1>

1 1 1 1
=-Vi(U(e1) +e1) + =Vi(b1) = =(U(e1) + e1) — =b1 = e;.
2 2 2 2
Now let us assume k < d and assume we have constructed Vi, Vs, ..., Vi such that Ug
fixes e1,e9,...,e,. Let us now construct Vi1 in much the same way we constructed

Vi. Let bry1 = Ug(exr1) — exr1 and let Viyq = I if b1 = 0 otherwise let Vi1q be the
reflection in Pyq : (bg41,2) = 0. If b1 = 0 then it is clear to see that Ugy1 = ViU
fixes ex41 as before and also fixes e; for 1 < i < k as Uiy1 = Uy in this case. If instead
b1 # 0 then as U, fixes e; and that

(brs1,€i) = (Ur(ers1) — ext1,€i) = (Uk(ers1),ei) = (Ur(er+1), Ur(es)) = (ex+1,€:) = 0,
we see that Vi1 fixes e;. We can therefore continue until we reach the desired result. [

Finally, a similarity is a Mobius transformation that does not involve inversion and
so preserves distances up to scaling. That is, ¢: R* — R? is a similarity if and only if
|o(x) — d(y)| = k|x —y|. In general, a similarity is of the form ¢ = kA + b, where k € R,
A € O(d) and b € R These include all translations, dilations and linear orthogonal
transformations.

In fact, we can see from these definitions that the group of Mobius transformations



of R? will be generated by the similarities and Ry, the inversion in S*~!. In particular,
suppose we have an inversion R in S%!(a,r). Then R = Ry o Roogo Ryo Ry o Ry,
where g(x) = r?z. So any inversion can be expressed as the inversion in the unit sphere

composed with translations and dilations.

2.2 Stereographic Projections

We would like to consider maps from S% — S? while our Mdbius transformations are
from R? — RY. In order to do so we must define a homeomorphism R? — S%. We do
this via a stereographic projection, w. We first embed R in R via 2 Z, the map
such that:

x = (x1,22,23,...,2q), T = (x1,22,23,...,24,0),

and co = co. Thus we have a 1-1 map of R? to the hyperplane z441 = 0 C RO We
can now map this hyperplane onto S¢ by projecting & towards ey, until it meets S in
the unique point 7(Z).

It is now clear that x — 7(Z) is a 1-1 map of R? onto S?. Explicitly:

Definition 2.5 (Stereographic projection) The stereographic projection 7: R? — s is
the map defined by:

ﬂ@)_< 2wy 2 MP—l)’ (2.5)

lz[2+177 7 |z2+ 17 22+ 1
and 7(00) = €g11-

While not immediately apparent, 7 is in fact a M&bius transformation of R, To
demonstrate this, consider the inversion Ry in S%(eqy1,v/2) of R9. Then

2(x1, e, ..., xq,—1) < 221 2zg  |x? — 1)

Ru(3) = - ,
4(7) = eapr + 1+ |z 22+ 1 Z2 + 1 |22+ 1

which is exactly Equation [2.5] Thus a stereographic projection is in fact an inversion
- and thus a Md&bius transformation - of R¥+1. In fact, conjugating an inversion or
reflection by a stereographic projection results in an inversion on S?. This now explains
the name “chordal sphere”; every chord of S? is sent to a (d — 1)-sphere or (d — 1)-plane
by 7. One can then define a stereographic projection from any point on S by composing
with a suitable rotation, which is again Mobius.

Now, given a stereographic projection, we can transfer the Euclidean metric on S¢

onto R? using the following.



Definition 2.6 (Chordal metric) The chordal metric is the metric

d(z,y) = |m(z) — 7 (9)] (2.6)

Using Equation [2.5| we can compute an explicit expression for the chordal metric.
From this expression, we may deduce that the chordal metric induces the same topology
when restricted to R? as the Euclidean metric. Hence, reflections and inversions as in
Definition are in fact homeomorphisms R? — R4 under the chordal metric, and so a
Mobius transformation is also such a homeomorphism.

The fact that stereographic projection is induced by an inversion implies that all
invariants under Mobius transformations apply to both R and S¢. Hence we can now
define maps S — S% with the same properties as our Mobius transformations.
Definition 2.7 The group of M&bius transformations of the d-sphere, denoted Mob(S%)
is the group of maps 7 o Mob(d) o 7!
fact Mobius.

, recalling that stereographic projections are in

2.3 Properties of Mobius transformations

Having established the equivalence of Mdbius transformations on R and S, we now

proceed to investigate their properties.

Definition 2.8 (Cross-ratio) Given four distinct points z,y,u,v € @d, the cross-ratio

of these points is
|z — ully — vl

z,Y, U, v = , 2.7
I R P =0
where | - | is the Euclidean distance between points. If one of these points is oo:
I 2 —u
7y7u7v]_’u_v’7 [.’L‘,OO,U,'U] _”U,—’U”
(2.8)
. _ly—l _Je—u
,y,oo,v] - ’ [xayvuaoo} - .
| =y | =yl

The cross-ratio is the fundamental invariant under Mobius transformation.

Lemma 2.2. A map f: R? — R s ¢ Mdbius transformation if and only if it preserves

cross-ratios.

Proof. For the forward direction, observe that reflections and inversions as defined earlier
preserve cross-ratio. Hence all Mdobius transformations do so as the composition of

reflections and inversions.



For the backwards implication, note that if we have a map ¢ that preserves cross-ratio
but does not fix oo, then we may compose it with an inversion such that the resulting
map does fix co. Let ¢ be a map that preserves cross-ratio and has oo as a fixed point.

Let x1, 2, z,y € RY be distinct points. Then

[z —xa| _ |w—@f|z —oo] _ |d(x) — d(@)|[¢(w1) — 00| _ |p(x) — d(z2)]
22 — x| w2 —mflz —oo]  |B(x2) — P(21)]|@(x) — 00| |p(w2) — (1)

where we use the fact that ¢ preserves cross-ratio and fixes oo and Equalities 2.8 By

similar logic, we obtain that

eyl _ I6(a) - 6(y)
o —aa] ~ [6(a) — olaz)]

Now, by multiplying these equal ratios,

[z -yl _ [¢(x) — ()]
lze — 21| |P(22) — P(21)]

|p(z2) — ¢(x1)]

T2 — 71

|z —yl.

= o) — o(y)| =

If we consider 1, z9 to be fixed, then this implies that ¢ is a similarity with scale factor

k = |¢(x2) — d(a1)[(Jz2 — 21]) 7! asin O
The proof of this result also provides the following corollary.

Corollary 2.1. If ¢ € Mob(d) and ¢(oc0) = oo then ¢ is a similarity.

Proof. The result follows immediately from the proof of Lemma [2.2 O
In fact, this provides the following result for Mébius transformations of S%.

Corollary 2.2. If ¢ € M6b(S?) has a fized point, then ¢ is a similarity.

Proof. If ¢(x¢) = z¢, then choose a stereographic projection sending xg to co. Then ¢
fixes co as an element of Mob(d) and so is a similarity by Corollary O

Having investigated similarities and the cross ratio, let us briefly mention closed

forms. We may express any Mobius transformation of R? as

aA(x —a)

|z — alf

¢(x) = b+ : (2.9)

where a,b € R? o € R, A € O(d) and € € {0,2}. Note that ¢ = 0 gives us the

similarities, and € = 2 gives us those transformations involving inversion.

10



Also note that S is orientable, and so we may classify every Mobius transformation
as either orientation preserving or reversing. A single inversion or reflection is orientation
reversing. A composition of an odd number of reflections/inversions is also orientation
reversing while an even number of reflections/inversions is orientation preserving. The
orientation preserving transformations form a subgroup, Mob™ (d) < Méb(d).

In the special case d = 2 any Mo&bius transformation can be expressed in its nor-

malised form as
B Az+ B

= = 2.1
$e) = ot (210)
if ¢ is orientation preserving, or
AzZ+ B
= 2.11
8e) = s (211)

if ¢ is orientation reversing, where we use complex notation. Here z € R?> = C and
A,B,C,D € C with AD — BC = 1. Moébius transformations of C are usually taken to
be those that preserve orientation, Mb™(2), as those that reverse orientation are not
analytic.

In fact, for the general case of I@d, any Mobius transformation can be expressed as
(ax + b)(cx + d)~! where x € R and a,b, c,d are in a Clifford algebra and satisfy some
specific constraints. This serves to demonstrate the form in Equation is merely a
special case. We will not go into more detail on this, but direct the reader to several

sources on Clifford algebras and their applications to Mobius transformations [12][13].

We now return to demonstrating results for use in later chapters. It is well known that
for d = 2, a Mo6bius transformation is determined by its action on three distinct points.

We provide a proof of this before introducing a similar result for higher dimensions.

Lemma 2.3. For two triples (z1, 22, z3) and (21,24, 25), there is a unique Mdébius trans-
formation ¢: C — C such that ¢(z1, z2, z3) = (2], 25, 25).

Proof. Suppose we have two Mobius transformations ¢(z1,22,23) = (21, 25, z3) and
& (21,22, 23) = (21, 25, 24). Take a third Mobius transformation (2], 25, 25) = (0, 1, c0).
To justify the existence of 1, take

1 z
A R e ey

then a quick check confirms that ¢ = 13 015 0 11 is such a map.
We may then define ¢ = ¢ o ¢ and o/ = ¥ o ¢/. Thus o~ o ¢’ maps (0,1,00) to

11



(0,1,00). We show that this implies o 0 ¢’ = id. Express o0 oo’ = (Az + B)/(Cz + D)
as in Equation Firstly, o o ¢/(0) = 0 implies B = 0. Now o o ¢/(00) = oo implies
C =0. Thus coc’ = (A/D)z. But coo’(1) = 1 implies A = D. Because AD — BC =1,
A =D € {1,-1}. In both cases 0 00’(z) = z and so we obtain the identity. But 0 oo
is also the identity by similar logic, and thus 0 = ¢/ = Yop =1o¢) = ¢p=¢'. O

The same is also clearly true of orientation reversing Mobius transformations of C
by a very similar method of proof. Having demonstrated the 3-transitivity of Mobius

transformations of @, the next lemma gives us a generalisation of this result.

Lemma 2.4. Given two subsets S = {x;}, 8" = {a}}, i € I, lying in R?, there is a
Mébius transformation ¢ with ¢(S) = S’ if and only if every cross ratio [x;, xj, Tk, 2] =
[}, @, vy, 37] for i, j,k,1 € 1. Given that ¢ ewists, it is unique if and only if S contains
d + 2 points not all on the same chordal sphere.

Proof. We follow the proof structure of Wilker in [10], fleshing out details he omits. We
begin by proving existence.

For the forward implication, we have already seen that Mobius transformations pre-
serve cross ratio by Lemma and thus cross-ratios match in S and S’.

For the backwards direction, we begin by inverting z; and 2} to oco. Call these
inversions ¢ and ¢/. Then S becomes T' = {y;} and S’ goes to T” = {y}}. Clearly ¢+ and

¢/ are Mobius and so

[.’Ei, xju Tk, ﬂfl] = [yh ij Yk, yl]
and

[, 2, 2 ) = [Yis U5 Yo w1l
for 4, j,k,1 € I. Now suppose there is 1) with ¢)(T") = T". Then 1(c0) = oo, and so by the
Corollary 1 is a similarity. Observe that ¢ := /=t oo is a Mobius transformation
with ¢(S) = S’. As a result, ¢ exists if and only if 1) exists. We show the existence of
1. By assumption, we have
., 7]

[xia Zj, Tk, :El] = [x;a :E;v

which implies
[Wis Y5> Y Y1) = [ Vo Wi W1

and so |y, — yg\ = k|y; — y;| holds for all ,j € I by rearranging the cross ratio. This

demonstrates such a similarity v exists, and so such a ¢ exists. This concludes our proof
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of existence.

We now proceed to prove the condition on uniqueness. To do so, we show that the

following are equivalent:
(i) ¢ is unique.
(ii) % is unique.

(iii) T contains a d-simplex (A collection of d + 1 points that do not all lie on a (d —1)-
plane).

(iv) S contains d + 2 points not on the same chordal sphere.

(i) = (iv): Suppose S did lie entirely on a chordal sphere. Then we can find
multiple ¢ which preserve S but differ elsewhere, for example the rotations about the
chordal sphere containing S. Thus assuming a unique ¢ exists means (iv) holds.

(iv) = (iii): If S contains d + 2 points not all on the same chordal sphere, then
under ¢, all d + 2 points again do not lie on a single chordal sphere. Take d + 1 of these
points in 7', which define a unique chordal sphere, which may be a (d — 1)-plane. The
remaining point then does not lie on this chordal sphere, and so we may easily form a
d-simplex.

(iii) = (ii): If T contains a d-simplex, then so does T”. Call the simplices o and
o', and note that ¢)(c) = ¢’ must hold. Suppose there exists a similarity ¢y # 1 with
the same property, which implies 1| L(¢(0)) = 0. But then (o L o4 is a similarity fixing
a d-simplex, and so is an isometry fixing a d-simplex, and is thus the identity. This
demonstrates that ¢ must therefore be unique.

(ii) = (i): If » =/ 0o ¢ 01~ is unique, then ¢ = /! 04 o1 is unique.

Thus we have shown (i) holds if and only if (iv) holds, and so the required uniqueness

condition. O

Note that the conditions of Lemma are vacuously true if S and S’ are triples, and
so Mob(d) is always at least sharply 3-transitive. Furthermore, the lemma tells us that
a Mobius transformation is determined by its action on at most d + 2 points in general.
This means we only ever have to check a finite number of points to entirely determine

the map.
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2.4 Characterising Mobius transformations by chordal sphere

preservation

We now proceed to show a crucial characterisation of Mobius transformations via their

preservation of chordal spheres.

Lemma 2.5. Ifd > 2 and f : R? — R? s q bijective function with the property that
f(X) is a chordal sphere for every chordal sphere ¥, then f is a Mébius transformation
of R,

Proof. Let us first recall Lemma which demonstrated that the group of Mo6bius
transformations is certainly sharply 3-transitive on R?. Given this, we may compose f
with a Mo6bius transformation, and thereby assume that f fixes 0, co and a point z on
St As f is assumed to be chordal sphere preserving, we see in particular that f is
(d—1)-plane preserving. We may use this fact and an induction to show that f preserves
lines. Then by the fundamental theorem of affine geometry, f is an affine transformation,
and is in fact linear as it fixes 0.

Consider a (d — 2)-sphere centred on 0 and passing through z. Then as f is linear,
it must preserve all such spheres. The union of all such spheres is exactly S%~!, and so
f fixes the unit sphere. But the only linear transformations that fix the unit sphere are
the orthogonal transformations, which we earlier demonstrated are themselves Mobius.

Thus the proof is complete. O

Let us now make a short remark concerning the history of this lemma. It has been an
objective to weaken the requirements on f in Lemma [2.5]for many years. Problems of this
sort belong to the geometrical discipline referred to as “characterisations of geometrical
mappings under mild hypotheses” [I4]. There are many papers on problems in the
discipline within the literature.

It may already be surprising that we need not assume f is continuous, yet it turns
out that neither surjectivity nor injectivity are required. In fact Li and Yao showed in

[15] that the following assumptions are sufficient:
(i) f preserves r-dimensional chordal spheres for some 1 < r < d.
(ii) f is non-degenerate, that is to say, f (]IA%d) is not an r-dimensional chordal sphere.

then given (i), f is a Mobius transformation of R if and only if it satisfies (ii).
All that remains to complete the characterisation is to show that M&bius transfor-

mations preserve chordal spheres.
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Lemma 2.6. If ¢ is a Mobius transformation, then it preserves chordal spheres.

Proof. 1t is apparent that similarities preserve chordal spheres; they preserve distance up
to scaling. As Mob(d) is generated by the similarities and Ry, we only have to check that
Ry preserves chordal spheres. Take a chordal sphere ¥ with equation a|z|?+2(b, z) +c =
0. Then for z # 0,00, y = Ro(z) = z/|x|? satisfies

c x c—2(b,z) + a|z|?
c\y[2+2<b,y>+a—x|2+2<b,|x’2>+a— e

Hence z lies on ¥ if and only if y lies on X' c|y|?> + 2(b,y) + a = 0. We then see that 0
lies on ¥ if and only if Ro(co) lies on X', and vice versa. Thus Ry(X) = X' O

Combining Lemmas[2.5]and we see that chordal sphere preservation characterises
the Mobius transformations. We see then that maps in Mob(S?) are characterised by
their preservation of chords of S

Finally, we provide a quick result on how the Mobius group of the sphere acts on

chordal spheres.

Lemma 2.7. The action of Mob(d) on the set of chordal spheres of R? s sharply tran-
sitive. That is, for ¥ and X' chordal spheres, there is a unique Mobius transformation
¢ such that p(X) = X.

Proof. Let S be a set of d+1 distinct points, and S’ another set of d+1 distinct points in
R?. Then S defines a unique chordal sphere ¥ and similarly S’ defines a unique chordal
sphere Y. Then as S does not contain d + 2 points on a single chordal sphere, there
is a unique Mobius transformation ¢ such that ¢(S) = S’ by Lemma This implies
#(X) =X as claimed. O

As stated earlier, results proved in the previous two sections also apply to Mob(S%)

and chords of S?. We will make use of this in the next chapter.

15



Chapter 3

Extending results of A.

Georgakopoulos

In [I], A. Georgakopoulos has proved certain results on sphere graphs and the d-sphere.
In particular, he has proven that there is an isomorphism between Aut(S?) and Aut(C?)
for d = 1, where Aut(S?) is the group of homeomorphisms from S¢ to S?. We aim to

prove the following generalisation for d > 2 in order to answer Question

Theorem (Theorem The map 7 from M6b(S?) to Aut(C?) is an isomorphism for
d>2.

Where 7(g) is the graph automorphism canonically induced by a homeomorphism g
of §¢, that is, for a chord C, 7(g)(C) = g(C). Also note that each M&bius transformation

h induces a graph automorphism 7(h) canonically.

3.1 Graph Notation

A large portion of the remaining chapters will concern graph theory, and so we introduce
the relevant terminology.

A graph X consists of V(X), its vertex set and F(X) the edge set. An edge consists
of an unordered pair xy where z,y € V(X). We then say z is adjacent to y, and
write x ~ y. We consider only simple graphs; those graphs where no edge has identical
end-vertices and no two vertices may be connected by multiple edges. We consider two
graphs X,Y isomorphic if there is a bijection ¢ from V(X) to V(Y) such that x ~ y
if and only if ¢(x) ~ ¢(y). A graph isomorphism X — X is a graph automorphism, a

permutation of the vertices that maps edges to edges, and non-edges to non-edges. For
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S C V(@), the subgraph G[S] of G induced by S has vertex set S and edge set consisting
of all edges in F(G) with both end-vertices in S.

We assume knowledge of the most basic terminology in graph theory and will en-
deavour to explain any less well-known notions that we use in later sections. There
are many texts the reader may refer to for further reading; Algebraic Graph Theory by

Godsil and Royle [16] is perhaps the closest in spirit to the focus of this dissertation.

3.2 Preliminary definitions and results

In order to tackle this problem, we must introduce some key definitions and results.
Definitions and are analogous to definitions in [I]. Recall our definitions
of S and D? from Chapter |2/ and that S? = oD4*L.

Definition 3.1 (Hyperchord) A hyperchord of S? is the non-empty intersection of a
d-dimensional, non-tangential hyperplane with D41, We refer to hyperchords as chords

for the remainder of this dissertation.

Definition 3.2 (Sheaf of Planes) A sheaf of d-dimensional hyperplanes is the collection
of all hyperplanes that contain V' where V is a (d — 1)-dimensional subspace of R*+!,

Definition 3.3 (Incident Chords) We refer to two chords P, @ as incident if PN Q
is a singleton. We often say “incident at x” when referring to a collection of pairwise

incident chords whose intersection is x.

Definition 3.4 (Sphere Graph) The sphere graph C?¢ is the graph whose vertices are

the chords of S?. Two chords form an edge whenever they intersect in D4+,

Definition 3.5 (Boundary Clique) We let a boundary clique be the set of all chords
containing = € S?. This clearly induces a clique K, in C?. Furthermore, K, # K, for

T # .

Definition 3.6 (Incident Clique) We let an incident clique be a maximal set of pairwise
incident chords at z € S?. This also induces a clique I, in C%, as all such chords contain
the point « and so are adjacent in the sphere graph. We may see that I, C K, certainly
holds.

It is important to stress that these cliques are subsets of the vertex set of C%, and
so we can view them as induced subgraphs. It is also simple to view them as subsets
of D1 and in fact we will often go back and forth between the sphere graph and the

d-sphere to construct proofs.
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Furthermore, a notable difference between d = 1 and d > 2 arises here. All boundary
cliques are also incident cliques for d = 1 however, this is not the case for higher dimen-

sions. In fact we will shortly see that a boundary clique is just a union of incident cliques.

We now introduce spherical caps to construct our proof; their use ensures we also cover
the case d = 1, allowing us to provide an alternative method of proof for the original
result of Georgakopoulos. It is possible to instead use the unique embedded circle that
is the intersection of a given chord with S%, and to prove analogous results. Such an
avenue is perhaps slightly more in line with the material of later chapters, but does not

cover all dimensions.

Definition 3.7 (Spherical caps) A chord P partitions S¢ into two distinct regions. A
spherical cap Cp is the union of P with exactly one of the aforementioned partitions.
Each cap clearly uniquely defines a corresponding chord. For d = 1 a cap is a circular

segment. Note that a given chord defines two spherical caps, giving us choice.

Having introduced the foundations, we now begin proving lemmas that will allow us

to extend Georgakopoulos’ results on sphere graphs.

Lemma 3.1. If P and Q are a pair of intersecting chords of S%, then they partition S

into four disjoint sets. Namely the following:
e A={z eS¢ Cp,x ¢ Cq}
e B={recSz ¢ Cp,xecCq}
e OC={reSYzrecCp,x¢Cpy}
e D={z€S%reCp,xeCy}
If P and Q are incident, then either |D| =1 or one of A, B or C is empty.

Proof. As our planes are distinct, intersecting d-dimensional subspaces inside a (d + 1)-
dimensional space, they must partition the d-sphere into four regions. We now analyse
the four possible cases when P and @) are incident, see Figure [3.1
In Case 1, |D| = 1 as D contains only the incident point, and A, B, C are all
non-empty. In Case 2, B=@. In Case 3, C = @. In Case 4, A = &.
O

The above proof demonstrates that a pair of incident chords partition the d-sphere

into three.

18



,,,,,,,, Q
(b) Case 2 (c) Case 3

[ Cp E4Cq

Figure 3.1: The four possible choices of caps for an incident pair.

Several of the following lemmas will rely on basic knowledge of vector spaces and
smooth manifolds. There are many texts dealing with such material, but we would refer
the reader to An Introduction to Smooth Manifolds by J. M. Lee for further reading on
the topic of smooth manifolds. Given this, we now analyse the structure of incident

cliques.

Lemma 3.2. A collection of chords {P;};c; with x € P;,Vi € I is an incident clique if
and only if it is the intersection of a sheaf containing V C T,S?, excluding the tangent
hyperplane, with D!, where dim(V) = d — 1.

Proof. For each chord P, recall that P = Hp N D%! where Hp is a hyperplane.

For the forward direction, suppose we have an initial chord P 3 x, with its associated
hyperplane Hp. We may then define T := T,S%, the tangent space at z, which is d-
dimensional. We also define /{p = Hp N'T. Now suppose we pick a chord Q) incident to
P at z. This necessarily implies Hp N Hg N'S? = {z}. Thus Hp N Hg C T. We also
define fg = HoNT. Thus

lpNlg=HpNT)N(HoNT)=HpNHoNT =HpNHg. (3.1)

Analysing dimensions, dim(Hp N Hy) = d — 1 as the intersection of two distinct d-
dimensional spaces. Thus dim(¢{p N{g) = d — 1. But ¢, and ¢, are (d — 1)-dimensional
spaces themselves, and thus /p = {g. Hence all chords incident to P at x must lie in the
sheaf around ¢p C T,S% and thus the incident clique containing P must be the sheaf
around £p minus 7, as it is tangent to S

To show the reverse implication, suppose we have a sheaf S around V C T,S% minus
T,S®. Then for H;,H; €5,

{2} =H;nH;NnS = (H;NnSY N (H; NS = P,N P, (3.2)
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and so pairwise incidence is satisfied. Maximality is also satisfied, any plane not in .S

cannot be pairwise incident to all members of S. O

We now show that incident cliques are the fundamental building blocks of boundary

cliques, which form the basis of our proof structure.

Lemma 3.3. Each boundary clique K, is the disjoint union of the incident cliques at

xX.

Proof. Firstly, given a chord P that contains x, it is clearly the intersection of a hyper-
plane, say Hp, contained in a sheaf around a tangent to z with D?. Thus P is in some
incident clique I,. This must be a unique incident clique, otherwise Hp would contain
two (d — 1)-dimensional tangents to S?. Thus every chord in K, is contained in a single

incident clique, and so the disjoint union of incident cliques at x must be K. ]
Intuitively, a chord containing a fixed point x can be determined by two parameters:

1. Tts “angle” (i.e. orientation within a fixed sheaf)

2. Its “rotation” (i.e. the direction of the tangent at x)

An incident clique at z is the collection of chords with a fixed rotation containing x.
In particular, this tells us that there are infinitely many disjoint incident cliques at a
point . A boundary clique is the collection of chords containing x with any angle and

rotation, and so it is the union of incident cliques at x.

Having determined the structure of incident and boundary cliques, we introduce two

useful invariants under automorphisms of intersection graphs of curves.

3.3 Region counting

We will often refer to a region counting argument throughout this dissertation. Given
an intersection graph Z of some class of curves embedded in S* we may take the induced
subgraph of Z consisting of all vertices not adjacent to a given collection of curves.
Removing such curves corresponds to removing the closed neighbourhood of every curve
in the collection. Recall that the closed neighbourhood of a vertex, v, in a graph is the
set of vertices adjacent to v as well as v itself. We denote such a neighbourhood N (v).
In this chapter, Z = C? - as mentioned earlier every chord defines a unique embedded

circle in S%; in later chapters we will consider more general classes of curves.
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Given a collection of curves, say {C;} := {Ci}ier C V(Z), we define:

Reg({C;}) = # of connected components of ISG on V(Z)\ (U N(CZ-)> , (3.3)
icl

the region function, where “ISG” stands for “induced subgraph”. The vertices not
adjacent to any C; are exactly those that do not intersect any C;, and are not in the
collection themselves. Then the region function gives us a direct correspondence between
the graph and the geometry of the sphere. The connected components of this induced
subgraph correspond to the topological components of Sd\{C’i}. It is clear that a graph
automorphism h € Aut(Z) must preserve the number of connected components, and so

the region function satisfies:

e Reg({Ci}) = Reg(h({Ci}))

e Reg(H) = Reg(h(H))

where H C {C;}. This fact will prove crucial in understanding the behaviour of graph
automorphisms on various classes of curves.
In general, if we claim that a collection of curves gives us n regions, we are implicitly

using the region function.

3.4 Region graphs

In addition to our region function, we may define a region graph, R;c,y on a set of curves
in S¢. Each vertex corresponds to a unique connected component in the aforementioned

induced subgraph on

V(2)\ (U N(Cz')> (3-4)

el
For two connected components X, Y, we have an edge X ~ Y if and only if there is
a j € I with XY induced subgraphs of Z, where Z is a connected component in the

induced subgraph on

VN U N (3.5)

itjel
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That is to say, there is a curve, which when removed from our picture, results in the
two regions becoming one. In subsequent chapters we consider more general curves on
S?, but in these cases region graphs may be defined for higher dimensions equally well.

We now prove that region graphs are indeed an invariant under any h € Aut(Z2).

Lemma 3.4. A region graph Ryc,y is preserved under h € Aut(Z). That is, Ric,y =
Ry((cy)s where h({Ci}) = {h(Ci)i € T}

Proof. Assume we are given {C;};c; and the corresponding region graph. We show

X ~Y if and only if A(X) ~ h(Y) where X and Y are vertices of the region graph.
For the forward implication, suppose X ~ Y. Then X,Y are induced subgraphs of

Z a connected component in the induced subgraph on Expression Then h(Z) is a

connected component of the induced subgraph on

V@) | U N*(@) (3.6)

i#jel
for some j € I. If not, then we contradict that h preserves adjacency. In particular,
the number of connected components must be preserved by h. Furthermore, h(X) and

h(Y) must be induced subgraphs of h(Z). Now consider the induced subgraph on

V(h(Z))\ (U N(h(@))) (37)
el
Clearly, h(X) and h(Y) must be distinct connected components of this induced sub-
graph, otherwise we again contradict that h preserves adjacency. This implies that
removing h(C};) from the collection unites h(X) and h(Y") into a single connected com-
ponent. This in turn implies that h(X) ~ h(Y).
It only remains to show that h(X) and h(Y) are indeed vertices of R (c,);. We must

show the diagram in Figure [3.2] commutes.

{Ci} g » h({Ci}))

Region Region

components h(components)

h

Figure 3.2: Commutative diagram
We let Region: P(V(Z)) — N be a function that takes a collection of curves {C;},
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a subset of the vertex set of some intersection graph of curves, Z, and gives us the

connected components of the resulting induced subgraph on Expression Note that

Reg(C) = |Region(C)|. Clearly, N(C;) = N(h(C;)) for all ¢ € I. Thus |J;c; N(C;) =
User N(h(C;)) and hence Expression is isomorphic to Expression as a graph.
Hence the connected components of each are isomorphic, and so h(X) and h(Y) are
vertices of Rp(c;) as expected.

The backwards direction follows by exactly the same arguments and thus the region

graph is preserved by any h € Aut(Z). O

We will see that region count and region graphs are useful tools in answering Question

M

3.5 Constructing a well-defined map of the d-sphere via

boundary cliques

The aim of this section is to show that boundary cliques are mapped bijectively under
the action of a given graph automorphism of C%, and so provide a well-defined map of
the d-sphere. We begin by recalling Lemma 3.1 from [1], which forms the basis of this

section.

Lemma 3.5 (Lemma 3.1). Every h € Aut(C%) maps each boundary clique onto a bound-
ary clique for d = 1.

We aim to extend this result to d > 2. To do this, we first prove results on incident

cliques and then combine these to obtain a result for boundary cliques.
Lemma 3.6. Fvery h € Aut(Cd) maps an incident pair onto an incident pair.

Proof. Let P, @ be an incident pair of chords which are sent to a non-incident pair of
chords, h(P), h(Q) by our automorphism h. There are two scenarios to consider in the
image. Either h(P) and h(Q) do not intersect or they intersect but are not incident.
The first is impossible as h is an automorphism of C% and so preserves adjacency. Thus
we may assume that h(P) and h(Q) intersect non-incidentally. Ergo, they divide the
sphere into four disjoint sets by Lemma [3.1]

We now use a region counting argument, explicitly stating all steps to make the
process clear. Consider the collection of all chords R € V(C?) which are not adjacent
to P or Q. This is the collection of all chords in of S¢ which are disjoint to both P

and ). Let us call the collection of all such chords R. Considering R as an induced
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subgraph of C?%, we show that it is composed of three connected components. Firstly,
only three topological components as demonstrated in Figure (a) may contain chords,
and so R must have exactly three connected components. To show connectedness of each
component, let us consider non-adjacent chords M, N in a particular partition. We can
always choose Cjy and C so that they do not intersect P or (. By the connectedness of
S?, there is a shortest path connecting C'; to C which lies entirely within the selected
topological component. We may then specify a sequence of caps not intersecting P or
Q@ - giving us chords - but intersecting the previous cap in the sequence. Thus there
is a path from M to N in our component of C% and so each component of R is indeed
connected. Hence under h each of these components remains connected, as edges are
preserved. However, each component must be mapped by h to a single partition of S¢
in the image, as we cannot split or add h(P) or h(Q) to a component. But we have only
three components of R, and four partitions in the image, so we have a partition with
no component mapped to it. But this provides a contradiction. There is clearly a chord
in this partition which intersects neither h(P) nor h(Q) and hence must be the image
of some element of R. But it is not adjacent to any of the images of components of R,
which has no isolated vertices. Thus h cannot map P and ) to a pair of non incident
chords. O

In future proofs we will omit the explicit construction of a contradiction if an auto-
morphism fails to preserve region count. We now demonstrate that incident cliques are

preserved by automorphisms of C¢.
Lemma 3.7. Fvery h € Aut(Cd) maps an incident clique onto an incident clique.

Proof. For an n-tuple of incident chords, S? is partitioned into n+1 sets, as a consequence
of Lemma [3.2] If our tuple is not mapped to another n-tuple of incident chords, then
there are two cases to consider. Either we have at least one pair of chords in the image
that are disjoint, or we have a pair that intersect but are not incident. In the first case,
we contradict that h preserves adjacency. In the second, the image chords will partition
S?% into at least n + 2 regions which contradicts that h preserves region count. Hence
incident n-tuples are preserved.

Thus incident cliques are sent to incident cliques as all finite subsets of an incident
clique are also preserved. Explicitly, h(I;) C I, for some y € S¢ and I, 1, incident
cliques at = and y. If h(I;) is a proper subset of I, then h~1(I,) intersects I, but
does not contain it. This then contradicts that h~! preserves incident chords. Thus
h(1;) =1, O
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Now we may show that distinct incident cliques at a point are preserved injectively.

Lemma 3.8. Let I} # I2 be distinct incident cliques at x € S®. Then Vh € Aut(C?),
h(I}) = I} and h(I2) = I2 with I} # I?2.

Proof. Observe that I UI? forms a clique in C?, as all of these chords contain z. Suppose
now that h(I!) = I, and h(12) = I, with y # z, by Lemma Then we may find P € I,
and @ € I, with PN Q = @. Specifically, as y # z, there is a diameter between the two,
so that they are in distinct hemispheres. We can then pick P and @ so that they are
contained solely in one hemisphere. As h=1(P), h=1(Q) € I} U I? this contradicts that
h preserves edges, and thus y = z. We call these Iz} and [yz_

Now suppose I, = I.. Take a chord P € I} /I2. Then h(P) € I, = I. Thus h™'(h(P)) €
12

2, a contradiction. Thus I; =+ I;, and distinct incident cliques at a point are mapped

to distinct incident cliques at a point. ]

We can also show that distinct incident cliques at different points are mapped injec-

tively by graph automorphisms.

Lemma 3.9. Let I, and I, be incident cliques at distinct points. Then h(I;) and h(I)

are also incident cliques at distinct points, for h € Aut(C%).

Proof. We may find a chord P € I, and a chord @ € I, such that PNQ = @. If h(I,) =
h(1,) then h(P) N h(Q) # @, contradicting that h preserves adjacency. Thus incident

cliques at different points are also mapped injectively by graph automorphisms. O
We finally show that graph automorphisms map incident cliques surjectively.

Lemma 3.10. For an incident clique I, there exists I,, such that h(I,) = I,. That is,

h € Aut(C?) is surjective on incident cliques.

Proof. We know from Lemma that h~1(I,) is an incident clique I, satisfying the
statement of the lemma. Clearly this incident clique must be unique, otherwise we
contradict Lemma when applied to h~!. O

Thus we see that any automorphism of C? is bijective in its action on incident cliques
at a point, by combining Lemmas and Furthermore, automorphisms of C¢
act bijectively on incident cliques at distinct points, as a consequence of Lemmas
and Given that incident cliques form the building blocks of boundary cliques, we

suspect that a similar result should hold for boundary cliques. We now prove so.
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Lemma 3.11. For a boundary cliqgue K., h(K,) = K, for all h € Aut(C%) and for
some unique y € S*. That is, boundary cliques are sent to boundary cliques by graph

automorphisms.

Proof. By Lemma [3.3] a boundary clique K, is simply the union of all incident cliques
at x. So for I, C K, we know that h(I,) = I, C K, for a unique y € S? by Lemma
Thus

WK = | hle)= |J I, =K, (3.8)

I,CK, I,CKy
by the bijectivity of h, and where we take the union to be the induced subgraph on the
union of the vertex sets. By the same logic h_l(Ky) = K,. Thus a boundary clique is

mapped to a unique boundary clique. O
Lemma 3.12. Boundary cliques are mapped bijectively under automorphisms of C%.

Proof. For injectivity, take two distinct boundary cliques K, K,. Suppose h(K,) =
h(K,) = K., but then we may find a small chord P in K, and a small chord @ in K,
such that P N @Q = &. But then h(P) N h(Q) # @ as both contain z. Hence we have
a contradiction, and so h maps boundary cliques injectively. For surjectivity, take a
boundary clique K, and a graph automorphism h. Then by Lemma h=Y(K,) is a
boundary clique. ]

Note that we do not have to consider distinct boundary cliques at a point z, as there
is a unique such clique for a given point.

At this stage, one might question whether incident and boundary cliques are nec-
essary to construct a bijective map of S?. We address this concern in the following

section.

3.6 Motivating incident cliques

The motivation behind defining incident cliques and boundary cliques is that they tell us
exactly how a point in S? is mapped under our graph automorphism, and thus allow us
to define a homeomorphism of the sphere in In fact, we do not strictly need infinite
collections; representing a point x by an incident pair would suffice. As in Theorem
we pick a pair incident at x, and map x to y, where their image under a graph
automorphism is incident at y. One concern around finite arrangements is demonstrated

in the following example, in S, where chords are circles.
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Example 1 We consider a collection of four pairwise incident chords, Py, P», Ps, Py, of
S? in the the arrangement demonstrated in Figure It is clear that pairwise incidence
is satisfied, but there is not a single point of incidence. In general such a configuration
is possible for up to d 4 2 pairwise incident chords of S%; a pyramid with an extra chord
in the middle. In these cases, a region counting argument does not distinguish this
arrangement from an arrangement that defines a single point of incidence, except for
d = 2. This is because such an arrangement divides the sphere up into d + 1 regions,
the same as for a sheaf arrangement of pairwise incident chords. However, an argument
via region graphs does demonstrate a sheaf arrangement cannot be split into a pyramid
by any h € Aut(C?). Namely, the region graph of a sheaf arrangement on n chords is
P, 11, while a pyramidal arrangement has at least one vertex of degree at least three in

any dimension.

Figure 3.3: A pyramidal arrangement of spheres

However, it is exactly our results on incident and boundary cliques that demonstrate
a map constructed using representative incident pairs is well-defined:that any choice of
representative pair for a given point will be mapped to the same point under a given
graph automorphism. While we will not provide a proof, this follows from our lemmas
on incident cliques, and is not obvious a priori. Furthermore, the use of incident and
boundary cliques demonstrates the surprising geometric properties that can be deduced
entirely combinatorially about graph automorphisms of C?. Finally, boundary cliques
do not require a choice of representative for each point which aids in succinctness when

proving our main result.

We now have two ways to construct a map of S?. We can use incident cliques,
choosing a representative for each € S¢, or we can use boundary cliques, in which case
no choice of representative need be made. In the following section we employ boundary

cliques, but replacing each K, with a unique I, suffices to show the same result.
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3.7 Constructing homeomorphisms of the d-sphere via bound-

ary cliques

We start by recalling Theorem 1.1 from [I], which states Georgakopoulos’ result men-

tioned at the start of this chapter.

Theorem 3.1 (Theorem 1.1). The map 7 is an isomorphism from Aut(S?) onto Aut(C?)
ford=1.

Where 7(g) is the graph automorphism canonically induced by a homeomorphism g
of S!, that is, for a chord zy, m(g)({z,y}) = {g(x),g(y)}. Also note that each Mobius
transformation h induces a graph automorphism 7(h) canonically.

We prove the following statement for higher dimensions:
Theorem 3.2. The map 7 from Mob(S?) to Aut(C?) is an isomorphism for d > 2.
where 7 is defined accordingly.

Proof. We follow a proof structure similar to that of Theorem 1.1 in [I]. Specifically, we
use the action of h on boundary cliques to construct a corresponding homeomorphism.

Firstly, 7 is clearly an injective homomorphism, as ker(w) = id. For surjectivity, we
want to find b’ € Mob(S?) with 7(h') = h for a given h € Aut(C?). By Lemma
for every x € S, h(K,) = K, for a unique y € S?. Define I/ by x — y. We must show
this is indeed a Mobius transformation. To show A’ is injective, suppose = # y € S¢
and h'(z) = W(y) = z. Then h(K,) = h(K,) = K., contradicting Lemma For
surjectivity, pick y € S¢ and note that h~1(K,) = K, for some z € S? by Lemma
and so h'(z) = y. Furthermore, for P,Q € V(C%), we have that:

h(P) = Q if and only if ¥'(PNS?) = QNs? (3.9)

as the unique boundary cliques containing P and @ lie along the (d — 1)-spheres that
are their intersections with S?. (The boundary cliques containing P must be sent to the
boundary cliques containing @ for h(P) = @ to be satisfied.) From this we see that
w(h') = h, and so 7 is bijective. Furthermore, 7(¢' o h')(P) = ¢'(h'(P)) = g(h(P)) =
(go h)(P) for ¢ and I’ constructed as above from two graph automorphisms g, h. This
demonstrates that 7 respects composition and so is indeed an isomorphism.

Note that Conditionimplies that A’ must preserve (d—1)-spheres, and is bijective.
Thus we satisfy the characterisation of Lemma [2.5| and so A’ is a Mobius transformation
of S%. O
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Furthermore, by using hyperspherical caps, our method of proof extends to the case
d = 1. In this case we find that homeomorphisms constructed from graph automorphisms
preserve nestedness of pairs of points, which suffices to demonstrate that all elements of
Aut(S') correspond to a unique graph automorphism. In this way we have also provided

an alternative proof of Georgakopoulos’ result.

We now demonstrate explicitly that Mob(S?) is not isomorphic to Aut(S?). Firstly,
for d > 2, there are homeomorphisms of S? which do not preserve chords. Consider a
local dilation, for example (a dilation of the sphere composed with a bump function [17]).
A (d —1)-sphere which intersects but is not contained in the scaled region will no longer
be a (d — 1)-sphere after the homeomorphism is applied. This certainly demonstrates
that the natural candidate 7 cannot be an isomorphism between Aut(C?) and Aut(S?),
but there may still exist some other isomorphism.

Let us now show such an isomorphism cannot exist, via Thompson’s T" group. Firstly,
we note that 7' < Aut(S!) - indeed, T < Aut™(S!), the group of orientation preserving
homeomorphisms of S! [I8]. Hence, we may embed T in Aut(S?) as follows. Let us
create the suspension of S¢, SS? := (S x [~1,1])/(S% x {—1})/(S? x {1}), which is equal
to ST [19]. Namely, we quotient by the end faces of S? x [—1,1], reducing each to a
point. Now given h € Aut™(S?), define

hlz,r] = [h(z),7].

as a map ST — S Then h/\og[x,r] = [(hog)(x),r] = [h(g(z)),r] = hoglz,r],
and so - respects the group operation. Furthermore, if h = id, then for r € (—1,1),
[h(z),r] = [x,r] which implies h is the identity, and so the map is injective. One may
also check that % is continuous under the compact open topology. Hence, we have
a continuous embedding of Aut™(S?) in Aut*(S¢+!). By iterating, we may conclude
T < Aut™(S?) for all d. We now mention several well-known facts about 7. In particular,
T is infinite, finitely generated, and simple - it has no proper normal subgroups. There
are many treatments of the group in the literature, see [20] for example. We say a group
G is residually finite if for any idg # ¢g € G, there is a homomorphism h : G — H
where H is a finite group and h(g) # idgy [21]. Then T' cannot be residually finite; any
homomorphism from a simple group must be either trivial or injective. So suppose T'
is residually finite; this implies we can find injective homomorphisms from an infinite
group into a finite group - an impossibility. Let us then make use of Mal’cev’s theorem,

which states that any finitely generated, linear group is residually finite [2I]. Then T'
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cannot be linear over any field. But recall from Chapter that M&b(S?) is isomorphic to
O7*(1,d + 1), which is a subgroup of GLg.2(R). Hence the finitely generated subgroups
of M&b(S?) are linear and residually finite. Hence, any homomorphism between 7' and
such a subgroup must be trivial, otherwise T is a linear group and is therefore residually
finite by being finitely generated; a contradiction. This therefore demonstrates that
M&b(S?) cannot be isomorphic to Aut(S?) for any d > 2, even as abstract groups.

Hence, we have proved our stated answer to Question

3.8 Extending the action of Aut(C?) via interior cliques

We now extend the action of Aut(C?) to the interior of S? via interior cliques.

Definition 3.8 (Interior clique) Let z € D4TI\S? =: int(S?). We define the interior
clique J, at x as:
J.={PecV(hH:zeP}

So an interior clique is the maximal set of pairwise-intersecting chords whose intersection

contains x.

Note that there is a unique interior clique for each point .
We begin by showing that interior cliques are mapped bijectively by automorphisms

of C¢.

Lemma 3.13. A pair of intersecting, non-incident chords cannot be mapped to a pair
of incident chords by h € Aut(C?).

Proof. Let P and @ be chords in V(C?) that intersect but are not incident. Then
Reg({P,Q}) = 4. Clearly h cannot map P and @ to a disjoint pair, as h preserves
adjacency. If h maps the pair P, Q to a pair of incident chords, then we get only three
regions in the image, contradicting that h preserves region count. Hence the image pair

must intersect non-incidentally. O
Lemma 3.14. FEvery interior clique s mapped to an interior clique by h € Aut(Cd).

Proof. As a consequence of Lemma we see that n-tuples of pairwise intersecting
chords are preserved. An interior clique J, is just such a tuple, and so J, must be sent
to a set of pairwise intersecting chords by h. In fact, the intersection of these chords
must also be a single point. If this is not the case, then we contradict that h preserves

adjacency. Thus h(J;) C J, for some y € D!, Firstly we show that such a y must be
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in int(S?). If y ¢ int(S?), then we must have that y € S¢. But this makes .J, a boundary
clique, contradicting Lemma when applied to h~! and Jy. Now if h(J,) is a proper
subset of J,, then h=!(J,) is not contained in .J, but intersects it, which contradicts

that h~! preserves pairwise intersecting chords. Thus h(J,) = Jy. O
Lemma 3.15. Interior cliques are mapped bijectively by automorphisms of C.

Proof. Lemma tells us that h(J,) = J, for all interior cliques J,. Now suppose
there are distinct interior cliques J, and J, both mapped to J, by h. But then we may
find a chord in J, and a chord in J, that are disjoint. But under h these chords must
intersect at z, contradicting that h preserves adjacency. Hence h maps interior cliques
injectively.

For surjectivity, suppose we have an interior clique .J,. Take a graph automorphism
h. Then Lemma tells us that h=1(.J,) is an interior clique. O

We now use interior cliques to naturally extend the action of an automorphism of C¢

to the interior of the d-sphere.

Theorem 3.3. Every Mébius transformation ¢: S* — S% as in §3.7 extends to a Mébius

transformation ¢ : D1 — DL via automorphisms of CY.

Proof. We have seen that for every z € int(S?), h(J,) = J, for a graph automorphism
h € Aut(C%). We thus extend ¢ via ¢ by z — y if and only if h(J,;) = J,. That is to
say, ¢’ is defined by the action of h on boundary cliques and interior cliques. Then ¢’
is bijective as h acts bijectively on both boundary and interior cliques, by Lemmas [3.12
and Finally, h(P) = Q if and only if ¢'(P) = @, where we recall that P and Q
are defined as the intersection of a hyperplane with D!, So in particular, h(P) = Q
implies that the boundary cliques and interior cliques containing P are sent to those
containing Q. This implies that ¢’ is a bijective map that preserves D! and also
preserves (d — 1)-dimensional spheres. If we now define a map q/S\’ = ¢/ on D4 and
5’ (00) = o0, we find that (/ﬁ\’ is a bijective map of S*! that preserves d-spheres. Hence
we see that g?)\’ is a Mobius transformation of S*! by Lemma and in particular that

¢ is a Mobius transformation of D?*! as a restriction of ¢?’ . O

This provides a novel way to extend Mdbius transformations to the interior of the

d-sphere via a purely combinatoric construction.
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3.9 Analysing the structure of C¢

Having concluded that Aut(C?) = M&h(S?), we can make some observations on the

structure of the sphere graph.

Observation 3.1 Lemmaimplies that C¢ is not edge-transitive. No h € Aut(C?) can
map an edge of C? comprising a pair of incident chords to an edge comprising a pair of
intersecting non-incident chords. We see then that the sphere graph is not arc-transitive.

However, C? is vertex transitive, as Mob(S?) is transitive on the chords of S¢, by Lemma

27

Observation 3.2 Let us consider i € Aut(C?). We already know that 7—'(h) is a
Mo6bius transformation on S¢. Following Lemma we may pick d+ 1 arbitrary points
in S?. These necessarily will lie on a chord, as a (d — 1)-sphere is defined by d+ 1 points.
As long as we pick our (d+4-2)*" point such that it is not on this chord, 7=1(h) is completely
determined by its action on these points. Thus h is completely determined by its action
on the boundary cliques determining these points, and furthermore, is determined by its
action on d + 2 pairs incident at these points. So we only need to check finitely many
pairs, and we will determine the entire structure of h. Considering how complex a graph
C% is - a graph with uncountably many vertices and uncountably many edges, containing
uncountably many cliques - this is a surprising property. It tells us that the symmetries

imposed by intersections and incidence restrict the possible automorphisms enormously.

Observation 3.3 Further to Observation [3.1] we see that automorphisms A distinguish
intersecting, non-incident pairs of chords, and incident pairs of chords, by Lemmas (3.6
and Every edge of C% can therefore be labelled as such. Let us colour incident edges
blue, and non-incident edges red. Then the subgraphs of C?% containing exactly the blue
or red edges have the same automorphism group as C%, as every h € Aut(C?) is also an
automorphism of these subgraphs. It is important to stress C% is not defined so that its
edge set carries such information about the sort of intersection between two chords, so
it is interesting to find that such information is indeed encoded in its edges. Note also

that all prior observations apply to both of these subgraphs.
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Chapter 4
Jordan curves on the 2-sphere

We now consider the intersection graph J of the simple closed curves on S2. Throughout
this chapter, “curve” or “Jordan curve” will refer to the image of a continuous and
injective map 7: S' — S%2. We use “arc” or “Jordan arc” to refer to the image of a
continuous, injective map A: [0,1] — S?. We often abuse notation and refer to v or
A itself as the curve/arc, rather than its image. If we have two Jordan arcs A, A’ and

A’ C A, we refer to A’ as a subarc of A. The aim of this chapter is to prove:
Theorem (T heorem 7 Aut(S?) — Aut(J) is an isomorphism.

Again, 7(g) is the graph automorphism canonically induced by a homeomorphism g
of S%; for a curve v, 7(g)() = g(v). That is to say, the group of automorphisms of the
intersection graph of Jordan curves on S? is isomorphic to the group of all homeomor-
phisms of S2.

We begin with a short overview of Jordan curves.

4.1 The Jordan curve theorem and generalisations

The Jordan curve theorem states that a simple closed curve in the plane divides it into
two disjoint, connected regions, the interior and exterior of the curve. The statement of
this theorem intuitively seems obvious, but the general case requires very careful proof.
A generalisation of the Jordan curve theorem to immersions of manifolds is known as
the Jordan-Brouwer separation theorem [22]. In our case, we are only interested in the

case of spheres, and so we provide a statement of the theorem below.

Theorem 4.1 (Jordan-Brouwer Separation theorem for d-spheres). The image X of

an njective, continuous map y: St — S separates ST into exactly two connected
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components, each with X as their boundary.

We will generally refer to these connected components as regions of the 2-sphere to
align with our terminology from previous chapters.

The generalised Schonflies Theorem [23] states that the closure of each component
as in Theorem is homeomorphic to D?, as long as the closure is indeed a manifold.
For d = 2, we run into no problems with the closure not being a manifold. However,
for d > 3, this is not the case, the canonical counterexample in three dimensions being
the Alexander horned sphere [24] - in which one region is not even simply connected.
Furthermore, Bing showed in [25] that one can join together two horned spheres in such
a manner that the resulting boundary between the two, K, is still homeomorphic to S?,
but neither component of S*\ K is simply connected. For the remainder of this chapter
we work only in the case d = 2.

A result equivalent to the generalised Schonflies theorem in two dimensions is what
we will call the Jordan-Schonflies theorem. On R2, this states that any homeomorphism
between two Jordan curves v and A extends to a homeomorphism of the whole of R2. In
particular, given a collection of Jordan curves, there is a homeomorphism of the plane
that maps one curve to the unit circle. The same is true on the 2-sphere; given any curve
v on S2, there is a global homeomorphism sending v to an equator. There are several
proofs of the theorem in the literature, C. Thomassen gives an interesting graph theory
based proof in [26].

Furthermore, it is a consequence of the generalised Schonflies Theorem that any
point of a Jordan curve is curve-accessible [26]. That is, given a point x on a Jordan
curve v and a point y not on v we may find a Jordan arc with endpoints z,y which
intersects vy only at x. Furthermore, due to a result of Alexander [22] the set of points
which are finitely accessible is dense on a given Jordan curve. By finitely accessible,
we mean that there is a Jordan arc of finite length satisfying the requirements for curve
accessibility. Such access arcs allow us to construct curves to demonstrate several results

in this chapter.

4.2 Pathological curves

It is a poor choice to rely on intuition when it comes to the study of Jordan curves.
For example, there are many fractal, nowhere differentiable Jordan curves, such as the
Koch snowflake, or Julia sets of certain complex polynomials [27]. Such curves do not

admit a tangent bundle, and so local arguments are made trickier. Furthermore, there
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are curves of infinite length. Such curves also demonstrate that two Jordan curves
may easily intersect at an infinite number of points, even an uncountable number of
times. There are even Jordan arcs A such that R*\ A is not simply connected - as
described by Fox & Artin [28]. Furthermore, there are nowhere differentiable Jordan
curves with positive two-dimensional Lebesgue measure, generally referred to as Osgood
curves [29][30]. It is possible to construct an Osgood curve of any two-dimensional
Lebesgue measure [ € (0,1), via Knopp’s triangle-elimination method [30].

As an aside, no Jordan curve may be space-filling; such curves cannot be injective

as a consequence of Netto’s Theorem [30].

4.3 Distinguishing C?> and J as graphs

Two distinct circles on S? may only have a region count of three or four. But we may
find two distinct curves v, A such that Reg({y,A}) = n for any n > 3. This tells us
that the intersection graphs of circles and Jordan curves are not isomorphic - recalling
that region count is ultimately a property of the graphs. In and of itself this does not

guarantee their automorphism groups differ, but instead motivates our investigation.

4.4 Generalising incidence and incident cliques

We begin by introducing generalised notions of incidence and incident cliques.

Definition 4.1 (Types of intersection) Suppose we have two curves 7 and A. Then they
are point-incident if y N X\ = {z} and arc-incident if v N A is a Jordan arc, that is, they
agree on some non-singleton, connected subset of the sphere. We say two curves intersect
transversely at a point x if there is a homeomorphism ¢: U — D? such that v and A are
mapped to two straight crossing lines, for U a neighbourhood of x. Equivalently, we say
they intersect transversely at a point if we may find points of each curve in both sides of
the other for all neighbourhoods of the point. Note that transverse intersection points

must come in pairs, as long as we have only a finite number of such points.

On the sphere there is a choice of which region bounded by a curve should be consid-
ered its interior. In general our arguments will be symmetric whichever choice is made,
but we will occasionally assume curves are orientated to ensure conciseness of exposi-
tion. Also note that what we term point-incidence is generally referred to as “tangency”

or “touching” in the literature [31]. However, we continue to use the terminology of
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Georgakopoulos in the name of consistency. Let us also call a curve circular if it is the
non-empty intersection of a non-tangential plane with S2.

We now begin proving results that allow us to construct a proof of Theorem

Lemma 4.1. Two non-disjoint curves divide S* into exactly three regions if and only if
they are point- or arc-incident. Furthermore, these regions are each homeomorphic to

the open disc.

Proof. We first prove sufficiency of the condition. Take two such curves «, A and assume
without loss of generality that both curves are orientated anti-clockwise. Then v bounds
two connected regions, call the region to the left of v O; and the other Os. By the
generalised Schonflies theorem, both O; and Os are homeomorphic to the open disc.
Then X is contained entirely within O; or Oz except for the incident point or arc. Note
that X\ also divides the sphere into two open discs, call the region to the left of A O3 and
the right region Oy4. If X is contained in O;, apart from the incident point or arc, then

we have the following relations:

(i) O1NOy =0

(i) O3N 0Oy =@

(iii) O3 € O; (which implies O3 N 02 = )
(iv) O2 € Oy

(v) O1N0Oy # 2

These relations together imply that only O3, O4NO1 and Oy are non-empty in S\ (YUN).
As stated earlier, we see that O, and O3 are homeomorphic to the disc.

Let us now make use of Janiszewski’s theorem [32] to show that O4NO; is connected.
The theorem states that for two closed sets in R? that any two points which may be
connected via a path avoiding either set may be connected via a path avoiding both
sets. We may apply the theorem to v and A on S? making use of the fact that R? is
homeomorphic to the 2-sphere. Take two points z,y € O4 N O1. Then there is certainly
a path connecting x and y that avoids v, as both points are in O;. Hence we may find a
path that connects x to y which intersects neither v nor A. Hence all three non-empty
regions are indeed connected.

We will omit proof of the fact that O4 N Oy is homeomorphic to the open disc as we
do not make use of this fact - however, a short argument via Alexander duality suffices.

In fact, the use of Alexander duality provides a much shorter proof of the entire lemma.
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An analogous argument shows we have three regions if A minus the incident point or

arc is instead contained in Os.

To show that incidence is necessary, assume we have v and A such that S?\(y U \)
has three components. Consider D = v\, which is an open set. Thus we may express
D as a countable union of open intervals on S', as a Jordan curve is homeomorphic
onto its image and any open set in R may be expressed as a countable disjoint union
of intervals. Now suppose v N A is not connected. Then choose a component I of D.
Let p and g be the points of T\I. The curve \ splits into two arcs with endpoints p
and ¢, neither of which are subsets of v, and at least one such arc intersects «y only at
these points. If there is only one such arc A, then = AUT is a Jordan curve entirely
contained in v U A which bounds on one side a fourth region. If there are two such arcs,
then exactly one provides the same result. In both cases we contradict our assumption,

and so v N A must be connected and thus is either a point or an arc. O

We can then construct further curves incident to both curves at z within each com-

ponent homeomorphic to the disc, as in the following lemma.

Lemma 4.2. For a given Jordan curve v and a point x € v, there exists another Jordan
curve \ such that yN A = {x}.

Proof. Given 7 and z, apply a homeomorphism ¢ of S? which transforms v into a circle,
by the Jordan-Schonflies theorem. Now take three distinct points a, b, ¢ contained in a
single open disc bounded by ¢(7). Then we may construct arcs ¢(z)b and ¢(z)c which
intersect each other only at ¢(x) and intersect ¢(y) only at ¢(z). We then construct
arcs ab and ac that intersect only at a and intersect the two initial arcs only at those
points whose letters they share. The union of these four arcs, A is a Jordan curve. Now

apply ¢!, and v and ¢~ 1()) are two Jordan curves, incident at x. O

Note that that A as constructed in the proof of Lemma can always be of finite

length, but a homeomorphism ¢! need not preserve rectifiability.

Lemma 4.3. Let v be a Jordan curve, and A be a Jordan arc such that A intersects -y

only at its endpoints. Then S*\(yU A) has three connected components.

Proof. The result is symmetric in the choice of interior of +. Let us assume without
loss of generality that v is anti-clockwise orientated and that A lies in the closure of the
region left of v, and intersects v at points b and c¢. Let L; and Lo be the arcs in v with

endpoints b and ¢. Then A\; := AU L; is a Jordan curve for ¢ = 1,2. Furthermore, A\
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and Ay are arc-incident along A. Hence, S?\(yU A) = S%\(\; U \2) has three connected
components by Lemma O

The previous lemma finds its use as a way to determine region count in later results.
In particular, given a curve and an arc intersecting that curve only at its endpoints and
which intersects no other curves, the arc divides the region it is contained in into two.

We will refer to this as “repeated use” of the lemma, if multiple such arcs exist.

Lemma 4.4. Two curves which intersect at exactly two points, and intersect at these

points transversely, divide S? into four regions.

Proof. The result is a consequence of Lemma [£.3] applied twice. In particular, let the
two points of intersection be x and y. Then v and A our curves, are formed of two arcs
each; we assume our curves are anti-clockwise orientated without loss of generality. Let
Ap and As be the arcs between x and y that are to the left or right of v respectively. Let
Az and Ay be the arcs to the left and right of A respectively, such that v = Az U A4 and
A= A1 UAs. Then As U Ay is a Jordan curve and A; is an arc satisfying the conditions
of Lemma [4.3] when applied to Ay U A4. Subsequently, A; U As and Ag again satisfy the
conditions of Lemma This implies Reg({v, A\}) = 4. O

It is now clear to see that the only way in which two intersecting Jordan curves
can divide S? into three is if they are point- or arc-incident. Point-incident pairs then
suggest a clear path forwards for constructing homeomorphisms of S?, as they define a
single point of intersection; the next question is whether this remains so under a graph

automorphism of 7. To show this, we first show transverse pairs are preserved.

Lemma 4.5. A pair of curves that intersect at exactly two points and do so transversely

is preserved by any h € Aut(J).

Proof. Suppose that two curves v and A intersect at exactly two points x and y, and do
so transversely at these points. In particular, this gives us four regions by the previous
lemma, and so we must have four regions in the image under h. The only other way two
curves may partition S? into four regions is by being twice incident, that is h(7) and
h(A) are incident to each other at two points, two arcs or a point and an arc. Let us
consider the region graphs of these two configurations as illustrated in Figure We
see that Ry, \y = C4, while R4y 5(n)} = K4 — € (the complete graph on four vertices
minus an edge). But Cy ¢ K4 — e as graphs. We know from Lemma that h should
preserve region graphs, and so we have a contradiction. Thus h must preserve transverse

intersection.
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(a) Transverse pair (b) Twice incident pair

Figure 4.1: Region graphs of a transverse pair and a double incident pair are not iso-
morphic. To see this, imagine removing the green or blue curve from each configuration,
and add edges between regions which have merged.

O]

Lemma 4.6. Two curves incident at a single point or arc remain so under any h €

Aut(J).

Proof. By Lemma [£.1] and the fact that h preserves adjacency, an incident pair must
be sent to an incident pair. To expand on this, we know the only configurations of two
adjacent curves that partition the sphere into three regions are an arc- or point-incident
pair. As h must preserve region count, we see that neither pair can be mapped to an
intersecting pair not arc- or point-incident. Secondly, such a pair cannot be mapped to
a disjoint pair, as h is an automorphism of the intersection graph of such curves, and so
must preserve intersection.

We now show the statement of the lemma. Suppose an arc-incident pair, v, A is
sent to a point-incident pair by a graph automorphism h. Take two points, a,b, one
in each of the two regions which have the incident arc as part of their boundary. Pick
two points x,y on the arc. Then take four Jordan arcs az, bz, ay and by such that
bx Nay = ax Nby = @ and bz, by and ax, ay intersect only at their common endpoints.
To justify the existence of such arcs, we use the Jordan-Schonflies theorem [26]. In
particular, there is a homeomorphism sending v to a circle, and this homeomorphism
may be extended to the entirety of S2. We may then construct two such arcs within the
region bounded entirely by the circular image of «v. By performing a similar process with
A we see four such arcs exist. Then the union of these four arcs, 1, is a Jordan curve

intersecting the incident arc at two points, and intersecting v and A only at these two
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points - note that these are transverse intersections. This curve adds two new regions to
the preimage by Lemma[4.3] so that Reg({~, A\,n}) = 5. But there is no such curve h(n)
in the image. To show this, firstly observe that h(n) must intersect h(y) and h(\) at
two distinct points each, and these intersections must be transverse, by Lemma We
recall that by hypothesis h(y) and h(\) are point-incident - now consider the possible

cases.

(i) None of the intersection points of h(n) with h(v) and h(X) are the incident point.
In this case Reg({h(7),h(N),h(n)}) =7 # 5.

(ii) One of the intersection points is the incident point. Then Reg({A(7), h(A),h(n)}) =
6 # 5.

In all cases we are using Lemma repeatedly to calculate region count. In case (i)
h(n) has four distinct intersection points, and in case (ii) has only three. In all cases
preservation of region count under h is violated, and thus an arc-incident pair must be

mapped to an arc-incident pair. It follows that point-incident pairs are preserved. [
We can now define generalisations of the incident tuples defined in Chapter

Definition 4.2 (Incident tuples) A point-incident n-tuple at z is a collection of n curves
where pairwise intersections are all equal to z. An arc-incident n-tuple on an arc A is a
collection of n curves where pairwise intersections are all equal to A. We also define a
subarc-incident n-tuple. This is a collection of n curves such that there is a maximum
pairwise intersection v; M 7; = A and all other pairwise intersections are subarcs of
A, or a point in A. Hence all arc-incident tuples are also subarc-incident tuples, and
a point-incident tuple is simply a subarc-incident tuple wherein the maximal pairwise
intersection is a single point. See Figure for an example of each. We term a subarc-

incident tuple that is neither a point- nor arc-incident tuple proper.

Note that all the incident n-tuples defined here have region count n+1. Furthermore,
the region graph of a point-incident tuple is a starlike tree on n + 1 vertices [33], a tree
where at most one vertex is of degree greater than two (in Figure (a), we get Ppy1. In
Figure we instead get K7 11, and Observation makes clear why we get the starlike
trees.). The region graph of an arc-incident n-tuple is P, 11, and the region graph of a
proper subarc-incident n-tuple is a tree on n + 1 vertices. This aligns with the fact that
all incident tuples are subarc-incident, as all region graphs here are themselves trees on
n + 1 vertices.

We first show that point-incident tuples are preserved by automorphisms of 7.
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Figure 4.2: Example (a) is a point-incident 6-tuple, see Figure for another example.
Example (b) is an arc-incident 6-tuple and example (c) is a proper subarc-incident 7-
tuple.

Lemma 4.7. A point-incident n-tuple is preserved by any automorphism h of J.

Proof. We see that such an n-tuple must give us n + 1 regions, by the logic of Lemma
The only configurations of n curves that divide the sphere into n 4+ 1 regions are

the union of some or all of the following:
(i) d disjoint curves - meaning not adjacent to any other curve in the union.
(ii) p point-incident tuples, each containing , curves

(iii) a arc-incident tuples, each containing m, curves

(iv) s proper subarc-incident tuples, each containing us curves

such that Y7, r;+>°%  mi+>.; ; u;+d = n. Note that a single point-incident n-tuple
is the case wherein p = 1, 11 = n and a, s,d = 0. Given that h preserves region count, the
image must be such a union. If our n-tuple is mapped to a configuration containing some
disjoint curves, then this contradicts that adjacency is preserved under h, so d = 0 and
exactly one of p,a,s = 1 otherwise we contradict Lemma [£.6] Furthermore, by Lemma
no pair of curves in our point-incident n-tuple may be sent to an arc-incident pair,
and thus a,s =0 and p = 1. O

Corollary 4.1. An arc-incident n-tuple is preserved by any graph automorphism h of

J.

Proof. 1t follows from Lemma applied to h and h~! that a subarc-incident n-tuple,
S on an arc A is sent to a subarc-incident n-tuple S’ on an arc B. We show that if S is
in fact an arc-incident n-tuple, that S’ is as well. Suppose towards a contradiction that
S is an arc-incident n-tuple on the arc A, but that S’ := h(S) is only subarc-incident

on an arc B. In S’ we take a pair v, A\ whose intersection is B, and a curve 7 such that
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nN~vy =nNAC B. Call this intersection B’, which may be an arc or a point. Note
that such curves exist by the definition of a proper subarc-incident n-tuple. Now, we
have some closed Jordan arc B” C B\B’ such that B” Nn = @ and B” C v, \. Take
two points x,y € B”, and a third point a in a region whose boundary contains B” and
B’ but not the open arc n\B’. Then such a region is homeomorphic to the open disc by
Lemma[4.3] and so we may construct arcs ax and ay as well as zy, so that they intersect
only at their endpoints. Call the curve that is the union of these three arcs . Then
under h~!, ;1 must be arc-incident to A and disjoint from A~!(n). But this is impossible,
as A C h~Y(n) due to S being an arc-incident n-tuple. Hence we have a contradiction

and S’ must be arc-incident. O

Corollary 4.2. A proper subarc-incident n-tuple is preserved by any automorphism h

of J.
Proof. This follows from Lemma [.7] and Corollary O

Given our results on finite incident collections of curves, we now show similar results

for infinite collections.

Definition 4.3 (Point-incident cliques) A point-incident clique P, is a maximal collec-

tion of curves pairwise point-incident at a point z.

By maximal, we mean that for any curve v not in P,, there exists some curve A in
P, such that @ # yN A # {z}. Note that we have infinitely many point-incident cliques
at a given point, and these cliques are not disjoint. For example, start with a circle
through a point x. We could construct an incident clique at = as in Chapter [2, which
is a point-incident clique. Another choice would be to construct a point-incident clique
at x using much more jagged curves. Both such cliques contain the circle, but differ
everywhere else.

Before showing point-incident cliques offer a well-defined map of points under the

action of a graph automorphism, we make an important observation on their structure.

Observation 4.1 In Chapter recalling that each chord defined a unique circular
curve, we saw that incident cliques necessarily had a nested structure. At first glance,
the same does not appear to be true for general curves, we may have an arbitrary number
of non-nested curves meeting at a single point, as demonstrated in Figure We show
that any point incident clique contains a sequence of at least n nested curves.

Suppose we have a point-incident clique with no nesting, so is formed of a number

of spikes meeting at a point. By the logic of Lemma [£.1] at least one side of each of
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these spikes is homeomorphic to the open disc. We may therefore choose an individ-
ual curve, and place a Jordan curve - within the side homeomorphic to the open disc -
that is incident at the same point. We may then repeat this process iteratively, placing
new curves within the previously placed curve. This demonstrates that the initial ar-
rangement was not maximal, and so did not in fact constitute a point-incident clique.
This can be done for every spike, and so every curve in an incident clique will contain
some nesting. Consequently, all point-incident cliques have sequences of nested curves

of arbitrary length.

Figure 4.3: Illustration of “spikes” all incident at a point. The spikes may be far more
complex than shown of course.

We now show several crucial properties of point-incident cliques, analogous to results

in Chapter [3] for incident cliques, but requiring much more careful proof.

Lemma 4.8. Point-incident cliques are preserved by any h € Aut(J). Secondly, h
acts injectively on distinct point-incident cliques. Thirdly, h acts surjectively on point-
incident cliques. Furthermore, h preserves distinctness or sameness of the incident point;
point-incident cliques at different points are mapped to different points, and distinct

point-incident cliques at the same point are mapped to the same point.

To clarify the statement of the lemma, by acting injectively, we mean that for P, # P,
at distinct points x, y, h(P;) # h(P,) and for P} # P2 both at a point z, h(PL) # h(P2).
By h acting surjectively, we mean given P, there exists a unique P, such that h(P,) = P,.

We now proceed to a proof.
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Proof. A point-incident clique is preserved as a consequence of Lemma [4.7} every finite
subset of the clique must be sent to a point-incident tuple at the same point.

We now show that point-incident cliques P, and P, at distinct points cannot be
mapped to distinct point-incident cliques at the same point z. Suppose towards a con-
tradiction that this is the case for a given graph automorphism h. Take a curve v € P,
such that y ¢ v and a nested triple A3 < Ay < A\; € P, where “<” indicates the left curve
is nested within the right curve. Such a curve 7y exists in P,; if there were no such curve
then all curves in P, would contain y, contradicting the definition of a point-incident
clique (P, contains at least two curves by Observation . We justify the existence of a
nested triple in P, as a consequence of Observation such a triple is a point-incident
3-tuple at .

By the Jordan-Schonflies theorem, apply a global homeomorphism sending A; to a
circle \]. This homeomorphism preserves the order of nestedness of the triple, and we
retain a single common incidence point for the triple A}, X5, \§ in the image. Call this
point 3’. Note that + - the image of v - cannot contain 3’, and that this image curve
is a closed set. So 3 € S?\/ which is an open set, and so we may find an open disc
D centred on 3’ that does not intersect 7/. We may then find a small circular Jordan
curve, which we shall call 7/, contained in this open disc which does not intersect 7’ and
which is incident to the image triple at y'. To justify this claim, \| is a circle, and the
boundary 9D is also a circle. Hence the regions bounded within D whose boundaries
do not meet X\, - which exist due to preservation of nestedness - are homeomorphic to
the open disc. Note that the image triple and 7’ together form a point-incident 4-tuple.
Now apply the inverse homeomorphism and call the image of 1’ under this map 1. Now
we find that the A;s are pairwise incident to n at y and that n N~y = &. Now apply h.
The image of the pairwise incident 4-tuple consisting of the A;s and 7 is incident at z.
Furthermore, z € h(v) as both h(P,) and h(P,) are equal to some point-incident cliques
P!, P? by supposition. But this provides a contradiction, as h(n) N h(y) 2 z as both
are curves through z, which contradicts that h preserves adjacency of curves. Hence we
conclude that the images of P, and P, under h must be point-incident cliques at distinct
points.

This implies that h maps point-incident cliques at different points injectively, and
as a consequence of the same being true for h~! we conclude that every point-incident
clique P, is the image of some point-incident clique. Thusly, we see that h is bijective

in its action on point-incident cliques at distinct points.
It remains to show that distinct point-incident cliques P! and P? are mapped to distinct
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point-incident cliques at a point y. Given a graph automorphism h, we see from the first
part of the proof that h~! cannot map point-incident cliques at different points to P,
and P2. Thus their images must be of the form P;, Py2 for some point y. For distinct-
ness, recall that the fact P} and P2 differ implies, without loss of generality, that there
is a curve v € P! such that v ¢ P2. In particular, given that = € v, this means there
exists A € P2 such that v N \ # {z}, otherwise this would contradict the maximality of
P2. If both are mapped to the same point-incident clique, then this contradicts Lemma
when applied to v and A. Given the surjectivity of A deduced in the first part of the

proof, we conclude that every P, at a fixed y is the image of some P, at a fixed x.

We have shown the statement of the lemma, and in particular demonstrated that the

action of h on point incident cliques is well-defined. O
Let us now focus on arc-incident cliques.

Definition 4.4 An arc-incident clique Ap is a maximal collection of curves such that

for any pair of curves v, A € Ag, yN A = B, where B is a Jordan arc.

Note that Observation also applies to arc-incident cliques in general, so we can
find nested sequences of arbitrary length in such a clique. We now show a result very

similar to Lemma [4.§] for arc-incident cliques.

Lemma 4.9. Arc-incident cliques are preserved by any h € Aut(J). Given two distinct

arc-incident cliques Ap, and Ap,, the following hold:

(i) If By N By = &, then the same is true under h.

(ii) If By # By and By N By # @ then the same is true under h.
(i1i) If By = By then the same is true under h.
and h maps (i), (ii) and (iii) bijectively.

Proof. The fact that an arc-incident clique is sent to an arc-incident clique by a graph
automorphism follows from Corollary We refer to the three arrangements of the
incident arcs as type (i), type (ii) and type (iii). Our strategy is to show that

(1) Type (i) cannot be sent to type (iii).
(2) Type (ii) cannot be sent to type (iii)

(3) Type (i) cannot be sent to type (ii).
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in this order. The proofs for all three share much with that of Lemma Our argu-

ments also apply to h~!, which suffices to show the reverse direction of each case.

(1): In a similar vein to Lemma take a nested triple Aj, A2, A3 € Ap, forming
an arc-incident 3-tuple. Again, such a triple exists by the logic of Observation Also
take a curve v € Ap, such that v N By # B;. Such a curve certainly exists, otherwise
every curve in Ap, intersects along Bj, contradicting the definition of an arc-incident
clique.

Now apply a global homeomorphism ¢ which sends A; to a circle A} by the Jordan-
Schonflies theorem, where we use the same notation as Lemma Then ~' does not
contain the incident arc of the image triple. Call this incident arc Bj and take a point
x € B{\7. Again we may take an open disc centred on z that does not intersect v as
the complement of 7/ is open. We can then construct a small curve incident to Bj at a
single point and which does not intersect 4/. Call this curve 1’. Now apply ¢! and h,
supposing that h maps our cliques onto a single arc, Bs. Firstly, note that A1, Ao, A3, n
form a proper subarc-incident 4-tuple, which is preserved by ¢! and also by h, due
to Corollary Hence h(n) is incident to Bs. But Bs C h(y), which implies that
h(n) N h(vy) # @, which contradicts that h preserves non-adjacency.

Hence type (i) and type (iii) cannot be interchanged under h.

(2): The proof is very similar to that of (1) and so we only provide a brief overview.
Take a nested triple in Ap, and a curve v € Ap, which does not contain B;. We apply a
global homeomorphism sending a member of the triple to a circle, and construct a small
curve incident to our triple and disjoint from ~. This forms a proper subarc-incident
4-tuple which is then preserved by the inverse homeomorphism and h. If both cliques
are mapped onto the same incident arc, then the constructed curve must intersect h(7),
which is a contradiction.

Hence types (ii) and (iii) cannot be interchanged under h.
(3): Again, the proof is similar to that of (1).

Thus each type must be preserved by h. All that remains is to show h is bijective
in its action. Clearly, h is certainly injective on types (i) and (ii), as they cannot be sent
to arc-incident cliques on the same arc. Furthermore, h must be injective on type (iii)
by the following argument. Take v € AL with v ¢ A%, and A € A% such that YN\ # B,
so v and A are not arc-incident. But if h(AL) = h(A%) then h(y) and h()\) must be
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arc-incident, contradicting Lemma[4.6] Surjectivity is then guaranteed by the injectivity
of both h and h~!. O

A subarc-incident clique is a maximal collection of curves such that some pair of
curves define a maximal intersection, and all other pairwise intersections are subarcs or
points in the maximal intersection. We term such a clique proper if it is neither a point-
nor arc-incident clique. Note that we have covered the case where both subarc-incident
cliques are point-incident cliques in Lemma[4.8] and the case where both are arc-incident
in Lemma [4.9] Preservation of such cliques is already a consequence of Corollary
The arguments of Lemmas and [£.9] also suffice to show similar results on proper
subarc-incident cliques, and so we will omit these to avoid repetition.

Before defining boundary cliques, we first show a stronger result on intersection

preservation under graph automorphisms.

Lemma 4.10. If two curves v, \ are incident at n-points and m-arcs and intersect
transversely at k points, then h(7y), h(X) under any h € Aut(J) do so as well.

Proof. Observe that the intersection points and arcs are cyclically ordered, as they occur
around two simple closed curves. Let us first enumerate the transverse intersection points
and incident points and arcs as 41,42, . . . tptmtk-

We show that the number of transverse intersection points, the number of incident
points and the number of incident arcs each remain unchanged under a graph automor-
phism h. Observe that Reg({v,A}) = n+ m + k + 2. We call the resulting numbers of
intersections and incidences under h k', n’ and m/. If n’ + m' + ¥ # n + m + k then
Reg({h(7),h(N)}) =n"+m' + k' +2 # n+m+ k+2, a contradiction. So let us assume
n'+m'+k" =n-+m+k. If k' # k then Ry, 5y is not isomorphic to Ryp() p(x)y- While it
is not especially difficult to see this immediately, we go into much more detail in Lemma
0. 1]

Now we show n’ = n and m’ = m, assuming ¥’ = k, by considering cases. If
n' +m’ # n+ m, then Reg({h(y),h(N)}) =n'+m' +k+2 #n+m+k+2 a
contradiction. Therefore, we assume without loss of generality that n’ = n + a and
m/ = m — a, where a < m. We construct what we term linking curves. For now, let us
assume m is even and n, k # 0. Construct curves M; ;1 where 5,7 +1 mod n+m + k
such that:

(1) MjjNMj_1;=1;

(il) Mjj+1 N Mjtqjta+1 = @ for a #1,—1 mod n+m + k.
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(iil) Mjjp1 Ny =15 Uit
(iv) My NA =100

Condition (i) implies that only linking curves between consecutive intersections or
incidences intersect, and that they do so incidentally. Condition (ii) implies that no

other pairwise intersections occur. Conditions (iii) and (iv) tell us that the linking

curves intersect v and A at no other points. See Figure [£.4] for an example.

~
Mo
M3 4 Ms. Mz
A My 10
V \ i10
M3 M
Mys Moy 8,9
A
Mio1

Figure 4.4: Example of linking curves for £k = 4, n = 5 and m = 1. Note that linking
curves only need to swap sides at an incident arc.

Under h, each linking curve remains incident only to those it intersected in the
preimage, as h preserves adjacency. Furthermore, the type of incidence is preserved
by Lemma two linking curves incident on an arc remain so and the same is true
for those incident at a point. Linking curves then allow us to show that m’ = m as
follows. Firstly, note that two arc-incident linking curves can only be arc-incident along
an incident arc of v and A. If this were not the case then we necessarily contradict

condition (iii) or (iv). In the preimage we have two linking curves arc-incident at every
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incident arc. If m’ = m — a > 0 then we must have more than two linking curves arc-
incident to some incident arc in the image by the pigeonhole principle, which contradicts
that non-consecutive linking curves are disjoint. If m’ = 0 then we contradict that arc-
incidence between linking curves is preserved. Hence m’ = m and so n’ = n; similar
logic applies if n’ =n —a and m’ = m + a for a < n.

If m is instead odd and both n,k = 0, then we cannot construct linking curves
satisfying our conditions. At each incident arc we must swap sides to avoid transverse
intersection, and so swapping an odd number of times leaves a curve having to intersect
at least one other curve transversely. Instead, we may construct linking curves avoiding
a single incident arc. Doing this for every such subset of the incident arcs shows that

m —1=m' —1 on all such subsets, and so m = m’ must hold. O]

4.5 Generalising boundary cliques

As in Chapter [3], we could choose a representative point-incident clique at each point x
to then construct a homeomorphism from. We instead proceed to use boundary cliques

to streamline the proof at the end of this section.

Definition 4.5 (Boundary clique) We define a boundary clique to be the union of all

point-incident cliques at x.

By our earlier results on incidence, we may find a curve point-incident to any curve
through z, at . Thus every curve through x is indeed in a point-incident clique at x.
Hence a boundary clique at x does contain every curve through x, and so is unique. We
could equivalently define a boundary clique at = as the collection of all curves containing
x, but this definition highlights that point-incident cliques are the fundamental building

blocks of boundary cliques.

Lemma 4.11. Boundary cliques are preserved by graph automorphisms, and are mapped
bijectively by any h € Aut(J).

Proof. Let us take a boundary clique K,. Then h(K,) = K, for some y, as h(K,) =
h(JP:) = Jh(P;) = K. Given K,, take an incident pair v, \ € K,. Then h™({y,\})
is contained in some point-incident clique at a point z. It follows that h™1(K,) = K,
and so surjectivity is satisfied. Furthermore, h(K,) # h(K,) for all z # z, by an
argument analogous to that in the proof of Lemma In particular, we can take a
nested point-incident 3-tuple in K, and a curve K, which does not contain x. Then we

can construct a small curve incident to the triple which does not intersect the curve in K,,.
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If h(K,) = h(K,) then this implies these two curves intersect, which is a contradiction.

Hence we have shown bijectivity of A on boundary cliques. ]

We see that boundary cliques still offer us a well-defined map of S2. We now utilise

this fact to prove the main theorem of this chapter.
Theorem 4.2. 7: Aut(S?) — Aut(J) is an isomorphism.

Note that a homeomorphism g necessarily sends a Jordan curve to a Jordan curve,

as g(7) : St — §? is injective and continuous.

Proof. To see that 7 is injective, observe that ker(m) = id. Furthermore, to show that
7 is surjective, we construct a homeomorphism A’ such that w(h’) = h, for a given
h € Aut(J). Construct such an A’ from h by its action on boundary cliques; h/(x) =y
for h(K,) = K.

We must show &' is indeed a homeomorphism. Firstly, A’ is bijective by Lemma [4.11]
and so we may consider its inverse h/~!. For continuity, we show the preimages of open
discs on S? are open, this suffices as the discs form a basis for the standard topology
on S?. So take an open disc, D, on S?. Take the boundary of the disc, 9D, which is a
simple closed curve itself. We see that h'~1(0D) is a simple closed curve, and is thus a
closed set, and hence divides the 2-sphere into two open regions. Then by our earlier
results, the open disc D must be sent to one of these regions by h'~!. Hence we see that
h'~1(D) is open and as S? is Hausdorff and compact, k' is a homeomorphism.

Finally, for ¢’, A" homeomorphisms such that 7(¢') = g and ©(h') = h for g,h €
Aut(J) and v € V(J), we have that:

m(g o b )(v) = (¢ o ) (v) = ¢ (W' (7)) = g(h(7)) = (go h)(7)

which demonstrates that 7 respects composition. O
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Chapter 5

Smooth Jordan curves on the

2-sphere

In this chapter we consider the intersection graph, S, of the simple smooth - meaning
C™ - closed curves on the 2-sphere. We then consider the intersection graph S* of the
C* simple closed curves on S?. Such curves are the image of an injective, continuous, C*
function v: S' — S?, where k € ZTU{oo}. Throughout this chapter, “curve” will refer to
a simple closed curve, where its differentiability class is clear from context. We often refer
to C*° curves as “smooth”. We show the group of homeomorphisms naturally associated
to the automorphisms of S¥ is strictly larger than the group of C*-homeomorphisms of
S? for k € Z+ U {oo}.

5.1 Smooth manifolds

In order to have a notion of smoothness on the 2-sphere, we require that we consider
S? as a smooth manifold. This is a rich and fascinating area, but is not the focus of
this thesis and so we only give a basic overview based on John M. Lee’s Introduction
to Smooth Manifolds[I7]. In the simplest terms, a topological space M is a manifold
if it is Hausdorff, second countable, and is locally homeomorphic to Euclidean R?. To
clarify the third point, this means that every point p € M has an open neighbourhood,
U, homeomorphic to some open subset of R4, A pair (U, ¢) is called a chart, where ¢
is the aforementioned homeomorphism and U is called the chart’s domain. Two charts,
(U, ), (V,1), are smoothly compatible if either UNV = &, or U NV # & and the map
1o ¢! is smooth as a map on R?. An atlas, <7 is a collection of charts whose domains

cover M, and is smooth if any two charts in &/ are smoothly compatible. We can then
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define a maximal smooth atlas on M, a smooth atlas not contained in any larger smooth
atlas. Then a smooth manifold is the pair (M, <7), where M is a topological manifold,
and &/ is a maximal smooth atlas. In general it is unnecessary to specify a maximal
smooth atlas on M, as such an atlas is unique for a given smooth atlas.

For S?, a common smooth atlas is given by two stereographic projections from the
north and south poles. That is, we take an open cover consisting of the two sets
S2\(0,0,1) and S?\(0,0,—1), and homeomorphisms as stereographic projections from
each removed point. Then this gives us two charts of S? and it can be easily checked
that these charts are smoothly compatible.

Given a map f : M — N where M and N are smooth manifolds, f is smooth if,
for every p € M, there exist smooth charts (U,¢) > p and (V,9) > f(p) such that
f(U) CV and 9 o f o ¢ is smooth from ¢(U) to ¥(V). In our case, we are looking at
maps 7 : S' — S? and so we care about smoothness of 1) oy o0 ¢~ : R — R?, where ¢
and 1) are stereographic projections identifying open neighbourhoods of S* with R¢ for
d = 1,2 respectively. Hence, when we describe a Jordan curve v as C*, for k € Z1U{oo},

we ultimately mean the prior composition is C* as a map from R to R2.

5.2 Distinguishing C?, J and S* via region counting

Using the argument of we see that S and C? are not isomorphic as graphs.
Furthermore, S and J are not isomorphic. Let us take a point-incident n-tuple

of smooth curves, with n > 5. Then the region graph of such a collection is P, 41, the

path on n + 1 vertices. However, this need not be true for general curves. Consider the

example in Figure which is a point-incident 5-tuple with region graph Kj 5.

5.3 The intersection graph of C*™ curves on S?

As our curves are smooth, we may define the tangent space of a given curve. We say
that two smooth curves intersect transversely at a point if the tangent lines are linearly
independent and tangentially at a point if the tangent lines are equal. If two curves
intersect exclusively transversely, we will say they intersect transversely, otherwise we
will refer to their intersection as tangential. When we refer to an arc, we mean an
open curve. All properties proved for automorphisms of 7 are true of automorphisms
of §. Note that all properties of h € Aut(J) when applied to general curves are true
of h € Aut(S*°) when applied to C* curves. We therefore list all such properties but
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Figure 5.1: Example of a non-path region graph for general curves

omit proofs, except those that demonstrate the differences between smooth and general
curves.

Lemma 5.1. Suppose v # X are two simple smooth closed curves, with YN\ # &. Then
v, A partition S? into three regions if and only if v N\ is path connected.

Proof. See Lemma [4.1 O
Lemma 5.2. All graph automorphisms h of S preserve arc-incident pairs.
Proof. See Lemma 4.6 O
Corollary 5.1. Graph automorphisms of S preserve point-incidence.

O

Proof. See Lemma [4.6

Corollary 5.2. Graph automorphisms of S preserve transverse intersection points.

Proof. See Lemma [4.5 ]

We then define point-incident cliques and arc-incident cliques.

Definition 5.1 (Point-incident cliques) Given a point = € S?, a point-incident clique at

x is a maximal collection of curves such that v; Ny; = {z} Vi, j € I our indexing set.

Definition 5.2 (Arc-incident cliques) Given a smooth arc A € S?, an arc-incident clique

at A is a maximal collection of curves such that v; Ny; = A Vi, j € I our indexing set.
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Lemma 5.3. The image of either clique under an automorphism of S is another such

clique at either a point or an arc respectively.

Proof. See Lemmas [£.8) and O

Lemma 5.4. Two smooth curves intersecting transversely at k points, incidentally at n

points and at m arcs do so under h € Aut(S).
Proof. See Lemma O
We then define our boundary cliques, and show our standard results.

Definition 5.3 A boundary clique at x, K, is the union of all point-incident cliques at

x.

Clearly a boundary clique contains all curves through x as every such curve is in

some point-incident clique at x.
Lemma 5.5. An automorphism of S, h, maps boundary cliques bijectively.

Proof. Follows the logic of the proof of Lemma O

We now denote the group of homeomorphisms of S? that preserve smooth curves in
both the forward and backward direction as Aut™(S?). We then prove the main theorem

of this section,

Theorem 5.1. The map 7: Aut™(S?) — Aut(S>) is an isomorphism, where Aut™(S?)
is the group of homeomorphisms of S? such that h and h™! preserve the class of C™
curves, for h € Aut™(S?).

and we explicitly show that there are homeomorphisms of S? that preserve all smooth
curves but which are not smooth themselves, via an argument of Le Roux and Wolff [7].
In particular, we denote the group of smooth homeomorphisms of S? as Diff**(S?), and

show the following:
Proposition 5.1. Diff>*(S?) C Aut™(S?)
Let us first prove Theorem 5.1

Proof of Theorem [5.1. Firstly, ker(w) = id, and so 7 is injective. We know from Lemma
m that for a boundary clique at x, K, h(K;) = K, for some unique y € S?. Define
a map h’ by x — y. Then I’ is injective, no two boundary cliques are mapped to the

same point. Furthermore, /' is surjective, as every K, is the image of a K, under h. To
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show A’ is continuous, use the argument on open discs as in the proof of Theorem
Hence as S? is Hausdorff and compact, i’ is a homeomorphism. We therefore find that
h' is a homeomorphism which preserves smooth Jordan curves. Furthermore, (k') = h,
and so 7 is surjective. The map 7 also respects composition as in the proof of Theorem
4,2 ]

Let us now show Proposition [5.1

Proof of Proposition[5.1. We modify a construction of Le Roux and Wolff [7]. Let
g: R — R be a smooth diffeomorphism supported in the segment [1/2,2]. That is

to say, g(x) = x for all = ¢ [1/2,2]; we suppose however that g(1) # 1. We consider the
map F: R? — R? defined as

Fle.y) = (z,zg(y/x)) ifx#0 5.)

(z,9) ife=0

This map, as well as its inverse, is obviously smooth in restriction to R?\(0,0). But we
find that dFig0)(1,0) = (1,0), dF{o0)(0,1) = (0,1) but dF0)(1,1) = (1,9(1)) # (1,1).
Hence we see that the differential of " at (0, 0) is not linear, and so F is not differentiable
at the origin.

We introduce a bump function, allowing us to transfer F' onto S?. Define y: R? —
[0,1] such that y = 1 on a disc D(0,7) C R? and x = 0 on R?\D(0,2r) and y is
smooth (See [I7] for explicit constructions). Then define F\(x,y) = x(z,y)F(z,y) +
(1—x(z,y))(x,y). Then F, is smooth except at the origin, equal to F' within a disc, and
equal to the identity outside a larger disc, furthermore, it transitions smoothly between
the two.

Now let (U, ¢: S? — R?) be a stereographic projection where U contains the north
pole, as in Then define the map

- ¢_1OFXO¢(p) ifpeU

F(p) = | (52)
P ifpeU

Then this gives us a well-defined homeomorphism of S?, smooth everywhere but the
north pole. Now let v: S! — S? be a smooth curve. If the image of v does not contain
the north pole, N, then F o+ is clearly still a smooth curve. Now suppose without loss of
generality that v(0) = N, where we are parametrising S! via R. If o/ (0) ¢ [1/2,2] then
F o~ and v are locally the same around N, in U. That is, for S' 3t — 0, Fo~(t) = (t)
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for small enough t. Otherwise, we may write v(¢) = (¢, (t)) up to reparametrisation,

for ¢t near 0, where « is a smooth map, and a(0) = 0. Then we have

Fony=(ttg(a(t)/1)

for small ¢. So as the map ¢ — «(t)/t for t # 0 and ¢ — &/(0) when ¢ = 0 is smooth, we
see that F o 7 is smooth.

So we have found a function that maps all smooth curves on S? to smooth curves,
but which is not smooth itself. So we may conclude that Diff**(S?) C Aut>(S?). O

5.4 The intersection graph of C* curves on S?

As in the previous section, all results proven in Chapter hold for C* curves, for k € Z7.
So in particular, we may define boundary cliques, and these boundary cliques are mapped
bijectively. We may distinguish each S* (k > 1) from J and C? by the argument of
We have that S° = 7 , and so we will assume k > 1 for the remainder of this chapter.

Within this section, we prove the following theorem

Theorem 5.2. The map m: Autf(S?) — Aut(S¥) is an isomorphism, where Aut®(S?)
is the group of homeomorphisms of S® such that h and h™! preserve the class of C*
curves, for h € Autk(S?).

We then prove the following proposition
Proposition 5.2. Diff*(S?) C Aut®(S?)

where we denote by Diff*(S?) the group of C* homeomorphisms of the 2-sphere.
Proof of Theorem [5.3. The proof is exactly that of Theorem O

Proof of Proposition[5.3 Observe that the map F defined in the proof of Proposition
also preserves all C* curves, but is not itself C*. Hence this provides an example of
a map in Aut®(S?)\ Diff*(S?). O

Let us now prove a further result which demonstrates that each S* is distinct.

Proposition 5.3. For every k, there is a function that preserves C* curves, but not
CF+1 curves. Hence AutfT1(S?) € Aut®(S?) for all k.
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Proof. We modify the proof of Proposition Let us first define fi(z) = 2*|z|, for
k > 1. Then f; is C* but not C*¥*1, which can be deduced from the one sided derivatives
for x > 0 and x < 0. Let us then modify F(z,y), defining

foy < [ @ R@wm) a0 5

(z,y) it =0.
Then F}, is easily seen to be continuous along x = 0, and by similar arguments to those
applied to F, we see that F}, preserves C* curves through the origin, but not C*+!
curves. As an explicit example, we can take a C*t1 curve which is equal to y = mz
near 0 such that m € [1/2,2]. Then Fy(z,y) = (z,zg9(m)) + (0, fx(x)g(m)). The second
term is not C**1, and so not all C*+1 curves are preserved by Fj,. We can then apply a

bump function and a stereographic projection to get an analogous map Fj, on S2. O

As a consequence of this proposition, each S¥ is not isomorphic to S for any finite
I # k; graphs with differing automorphism groups cannot be isomorphic. Furthermore
S is not isomorphic to any S¥ for finite k, as each Fy, is in Aut®(S?) but not Aut>(S?).
From this and the earlier sections distinguishing our different intersection graphs of S?,

we see that no pair of C%, J, S or S* are isomorphic as graphs for any k > 1.
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Chapter 6
On region graphs

Region graphs provide a novel and interesting method of construction for a graph. We
investigate the properties of region graphs on different classes of curves on the 2-sphere.
Throughout we assume that all such graphs are finite, meaning that collections of curves
are finite, and no two curves intersect infinitely many times. We classify some simple
region graphs on collections of general curves which serves to demonstrate their incredible
complexity. Thereafter we focus on region graphs of circles and demonstrate that this
is a more tractable problem. When we discuss region graphs on C2, we rely on the fact
that every chord in C? as defined in Chapter [2| defines a unique circle embedded in S2.

6.1 Motivating the study of region graphs

Recall that region graphs are defined by “adding” removed curves back into the inter-
section graph of some class of curves on S?. In the geometric sense, this corresponds to
taking a collection of closed curves I' = {v;} with ¢ € I and taking a vertex for every
topological component of S?\I'. Now remove each ; with replacement and add edges
between all pairs of topological components which have merged. Repeat this for every
element of I, recalling that the graph should remain simple. The resulting graph is the
region graph Rr.

We demonstrated in Lemma that each automorphism of the larger intersection
graph induces an automorphism of the region graph. It is thus useful to study region
graphs as invariants of this action.

Region graphs are also interesting from a purely graph-theoretic perspective; we will
see definite structure within these graphs, especially within those on circular curves. We

show several interesting facts about region graphs, demonstrating that not all graphs
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are region graphs, and classifying certain simpler classes of region graphs. Furthermore,
it shall be seen that there are ways to iteratively construct region graphs of C2, which is

an unexpected result.

6.2 Necessary conditions for adjacency in region graphs

As we will later see, region graphs may be extremely complicated. It is therefore helpful
to understand their structure. To do so, we introduce a necessary condition for two

vertices to be adjacent in a region graph.

6.2.1 Codes

Suppose we have a finite collection of 7 distinct curves {7;}ic1,). Every vertex of a
region graph corresponds to a distinct topological component of S2. We recall that the
interior of a curve may be chosen arbitrarily on the 2-sphere. Make such a choice for all
curves in the collection. Then every region can be identified by an r-digit binary number.
Such a code looks like 1001 ...0110; this particular code tells us that the region is in the
interior of +1, the exterior of <5 and so on. In particular, if two regions’ codes differ at
n digits, then they do so in all choices of interior; exchanging the interior and exterior
of v; corresponds to flipping the 4t digit of every code. Different regions may have the
same code, but for two regions to merge, we must be able to make their codes the same
by removing a single curve. Removing the curve «y; corresponds to deleting the 7™ index
of every vertex’s code. So a necessary condition for two vertices being adjacent is that

their codes differ in at most one index.

6.2.2 Codes are not sufficient

We have shown that two regions are adjacent only if their codes differ by at most one
digit. The converse is false, as it is possible to have two regions with the same code that
are not adjacent, see Figure

In Figure the two hatched regions have the same binary code. To see this,
suppose that this arrangement of curves is contained in a small neighbourhood on S?
homeomorphic to R%. Then choose interiors as for Jordan curves on the plane. Let us
call the purple curve v;, the blue 79, the green 73 and the red ~v4; then the hatched
regions have code 1100. As shown above this implies they have the same code for any
choice of interiors. We demonstrate that they cannot be adjacent in the region graph on

the four curves. If we remove the red curve, then they are still separated by the green
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(a) Example of two non-adjacent regions (b) Example of two non-adjacent regions with
with the same code the same code for curves in C2

Figure 6.1: Arrangements with non-adjacent regions that share a code.

curve and vice versa. If we remove the purple curve, the two regions are still separated
by the red and green curves. If we remove the blue curve, then the two regions are
contained in two separate regions, bounded by the green and purple curves. So we have
demonstrated that no single curve can be removed to merge the two hatched regions.

One notices that we have used non-circular curves in Figure and so the question
arises as to whether we can run into the same problem using only circles on S?. The
answer is yes, by considering the arrangement of circles on S? in Figure Form an
incident chain of circles around an equator. That is to say, we have a sequence of n
circles (C,) around the equator such that C; N Cj41 is a singleton with ¢ mod n, and
all other pairwise intersections are empty. Then duplicate this sequence and shift it so
that the centre of each circle in the duplicate sequence is an incident point in the initial
sequence. Now take a larger circle across the equator. Then there are two regions within
the larger circle with same code.

In Figure the red and green circles represent the previously described sequences
on an equator, and the hatched regions have the same code but are not adjacent in the
corresponding region graph. If we remove a single red or green circle then the hatched
regions are still separated by the chain of the opposite colour. If we remove the blue

circle, then both chains still separate the hatched regions.
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6.3 Region graphs on J

We begin our results by analysing region graphs on simple closed curves on S?, as in
Chapter [4] In particular, we classify all region graphs on two curves, and discuss a few
graph classes which are contained in the class of region graphs on a finite number of
closed curves. A finite collection of curves corresponds to a finite induced subgraph of

J.

6.3.1 On two curves

Throughout this subsection, we analyse the region graphs of two curves y,A € J. We
denote the region graph of two curves that are incident at n points and m arcs, and
intersect transversally at 2k points R4, . All such incidences and intersections must
be disjoint, otherwise we have a self-intersection. See Lemma It will become clear
that on general curves, region graphs may be incredibly complicated, and so we only
prove results in a few particular cases.

In order to classify R4, we need to introduce the join of two graphs. Given
G = (V1,Eq) and H = (Va, E3), G x H is the graph with vertex set V; UV, with all edges
in By U E5 and all vertices of G adjacent to all vertices of H. Furthermore, we denote
by G + H the disjoint union of two graphs, the graph with vertex set V(G) UV (H) and
edge set E(G)U E(H). We denote the disjoint union of n identical graphs G as nG

Lemma 6.1. We classify all finite region graphs on two curves.
e Roo=Ps3
o Ry =2Kp x 2Ky fork >0
o Rytmo=Knim x 2Ky, forn+m >0

® Ryimi = (Kq+ Kp) x 2K forn+m >0 and k > 0 where a,b € Nt and depends

on the cyclic ordering of the incidences and transverse intersections.

Proof. For the sake of illustration, we orientate our two curves anti-clockwise, as in
Figure The steps we follow below hold no matter the orientation of our two curves, in
general replace “right” with “left” and vice versa for an individual curve if the orientation
of that curve is flipped.

If n =m = k = 0, then we have two disjoint curves, and a quick check shows the
corresponding region graph is the path on three vertices, P3. Throughout the rest of the

proof, we use Lemma {4.3| repeatedly to count the number of regions.
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A 4

Figure 6.2: Anticlockwise orientation of curves, in this case k =4, n =1 and m = 0.

We now tackle the case for £k = 0. There are exactly n + m regions to the right of
both curves. Upon removing either curve, these regions all merge, and hence form a
clique K., within the region graph. There are then two other regions, one to the left
of v and the right of A\ and vice versa. Call these two regions G and L. Upon removing
v, G merges with those regions to the right of both curves, and so is adjacent to all of
them in the region graph. Similarly, L merges with all these regions upon removal of A.
However, neither removal merges G and L. Furthermore, there are no regions to the left
of both curves. Hence we see that the region graph is K1, x 2K as claimed.

If n+m = 0 < k then by similar reasoning to the previous case all k regions to the
right of both curves form a clique, and all k£ regions to the left of both curves form a
clique. We find regions G and L as before, each to the right of one curve and the left
of the other. We find that upon removal of v, G merges with all regions to the right
of both curves, and L merges with all regions to the left of both curves. The opposite
is true upon removal of A. Again G is not adjacent to L, and no region to the right of
both curves can be merged with a region to the left of both. Hence we have two separate
cliques of size k, and two vertices adjacent to all vertices in both cliques, but not each
other. This is exactly 2K} x 2K;.

For the final case, we may enumerate the transverse intersection points within the

natural cyclic ordering of the intersections as in Lemma For each transverse inter-
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section point ¢, we say the number of incident points and arcs occurring between ¢ and
i+1 in the cyclic ordering is n; and m;. We find there are exactly 7 := > ., ;(nj+m;+1)
regions to one side of both curves and s := Zoddj(nj + m; + 1) to the other side of
both. By this we mean we have r regions either to the left of both curves or to the
right of both and s regions on the opposite side of both curves. These form two cliques
of size r and s which are disjoint. The exact values of r and [ depend on the cyclic
ordering of the incidences and intersections; for example, if all incidences are between
two consecutive transverse intersection points, then we get two cliques of size n +m + k
and k. Finally, we again have a region G which is to the left of v and the right of A and
vice versa for L. Again, both G and L may be merged with both cliques, but not with
each other. Similarly, no region in either clique can be merged with a region of another

clique. Hence we find the region graph is (K, + K;) x 2Kj. O

In fact, the statement of Lemma follows from the properties of codes described
in In the case where we have two curves, each code has two digits. Therefore
possible codes are 00, 01, 10 and 11. Removing either curve then deletes the first or
second indices. Deleting the first or second clearly merges all regions with code 00 and
merges all regions with code 11, as their resulting code is 0 or 1. Removing the first
curve then shortens the codes 01 and 10 to 1 and 0, and the opposite is true if we remove
the second curve. Hence we have demonstrated that these two regions can merge with
all regions of code 00 or 11. As regions whose codes differ at more than one digit cannot

be adjacent, 10 and 01 are not adjacent and so we are done.

We now show a few properties of the graphs R, ,, x. The first result on planarity is
not surprising, as Lemma [6.1] demonstrates that large cliques may develop for n+m+k

small. Also note the following:

A graph G is planar on the plane R? if and only if it can be embedded on S?

such that no two edges cross.

This follows via applying a stereographic projection to a planar graph’s embedding
in R?2. A stereographic projection is Mobius, as we showed in Chapter [2[ and so maps
non-crossing edges to non-crossing edges, and the meeting point of two edges (a vertex)

to a meeting point. This justifies the use of the term planar for graphs embedded in S?.
Lemma 6.2. R, is planar if and only if n +m +k < 3.
Proof. A graph is planar if and only if it contains no Ks-minor or K3 3-minor, by Kura-

towski’s Theorem. Let us first tackle the forwards direction.
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If £ =0, then K1, X 2K only contains a K5 minor if n +m > 3, and clearly can
contain no K33 minor if n +m < 3 as this provides too few vertices.

If K > 1 and n+m = 0 then by Lemma[6.1] we have two disjoint cliques K}, and Kj.
To find a K5 minor, contract all vertices of one K}, to the vertex representing GG. This
results in a clique of size ¢ := k + 2, thus ¢ > 5 implies £+ 2 > 5 impliesn+m + k > 3
as required.

If instead & > 1 and n +m > 0, then by Lemma [6.1] we have two disjoint cliques
of size K; and K., where [ +r = n + m + 2k. Contract the clique K, to the vertex G,
where x = min{r, [}, which results in a clique of size ¢, where ¢ = max{r,l} +2. Observe
that c+x =r+1+2=n+m+2k+ 2. Then ¢ > 5 implies n +m + 2k 4+ 2 > 5 implies
n+m + 2k > 3. It only remains to observe that n +m > 0 and k£ > 1 together imply
n+m + 2k > 3 and so all such graphs must contain a K5 minor.

For the backwards implication, a manual check shows that Rg o, Ro,1, o2, 1,0, R1,1

and Rs g are all planar. O
We now prove a perhaps slightly surprising result.
Lemma 6.3. R, is perfect for all n,m, k.

Proof. Note that cliques are perfect, and the disjoint union of two cliques is also perfect.

For the case n = m = k = 0, the region graph is Pj, a brief check shows it is
perfect. We now assume n +m > 0 or k > 0. We therefore have a clique of size r,
a clique of size [, and two vertices joined to these two cliques. Let us label vertices
based on our choice of orientation. All of the following results hold for other labellings
of vertices. We label vertices in the K clique as I, those in the K, clique as rr and
then label G as Ir and L as rl. These labellings are simply the side of v and A that each
vertex’s region is located on, as in the proof of Lemma Our task is to show that
X(Rytm k) = w(Rytmk), and that the same equality holds for all induced subgraphs I
of Ry4m k- We initially show the equality holds for R, . We need r colours to colour
the K., and [ colours for the K;. We then need two extra colours for G and L, as both
are adjacent to all vertices in the [ and r cliques. Hence x(Ry+mk) = max{r,{} + 2.
Furthermore, w(Ry4m ) = max{r,l} + 2. This is because both K, and K; form cliques
of size r + 2 and | 4+ 2 with G and L. Suppose without loss of generality that r» > [.
Then adding another vertex to the r + 2 clique implies we must add a vertex from the
K clique. But such a vertex is not adjacent to any vertex of the K. clique, and so we
have indeed found the clique number of R,,{,, . We now consider cases for the labelled

vertices of induced subgraphs I. Vertices can be labelled:
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(i) Entirely rr or entirely Il - in which case I is perfect as a clique
(ii) Either Ir or rl - in which case I is perfect as K or 2K,
(iii) rr and Il - and so I is a disjoint union of cliques, and is perfect
(iv) Both rr and rl or Ir - then I is a clique and is perfect

(v) Both Il and rl or Ir - same as case (iv)

(vi) A combination of all three - so we choose a vertices labelled rr, b vertices labelled
Il and p € {1,2} vertices labelled Ir or rl. Following the logic for R, ., above,
Xx(I) = max{a, b} + p and w(I) = max{a,b} + p. Hence I is perfect.

We have shown that x (/) = w(I) for all induced subgraphs I of R, k, and so Ry k
is perfect. O

It is true in fact that the join of two perfect graphs is perfect, and so Lemma [6.3] is
not surprising, given the structure of such graphs. We chose not to rely on this property

of the join to help demonstrate the structure of induced subgraphs of R, 1, k.

6.3.2 On more than two curves

We now focus on results involving region graphs on more than two curves, Ry,.y. We

begin by demonstrating several well-known graphs which are themselves region graphs.

Lemma 6.4. A path on n vertices is a region graph.

Proof. Take n — 1 nested, disjoint curves. O
In fact, we can show a stronger result.

Lemma 6.5. Any finite tree is a region graph.

Proof. Given a tree, we may assume it is rooted. We construct the tree iteratively.
Begin with an empty set of curves, which has region graph K, which we shall assume
corresponds to the root. For each child of the root, take a disjoint curve with no nesting.
The resulting region graph is the root with its children. At the k™ step, for a vertex
v added in the previous step, let C'(v) denote the number of children of v in the given
tree. Add C(v) disjoint non-nested curves to the region corresponding to v. Repeat this
for each such vertex. The region graph resulting from this process is exactly the given
tree. O
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All paths are trees, and so this proof suffices to show Lemma In fact, this tells
us that there are at least as many planar region graphs on n curves as the number of

unlabelled trees on n vertices [34].
Lemma 6.6. Every cycle Co; where | € N2° is a region graph.

Proof. Take [ circles such that pairwise intersections are all equal to {x,y}. That is to
say, all circles in the collection should intersect each other at the same two points, and
nowhere else. See Figure [6.3] for an example for Cg. O

Figure 6.3: Arrangement of circles with region graph Cg

Lemma 6.7. The only complete region graphs are K1 and K.

Proof. Firstly, K1 = Rg. Secondly, K2 = Ry.}, the region graph of a single curve. Now
suppose that v > 3 and K, is a region graph on r curves, so in particular we have v
regions. Then r < v — 1 as r curves divide S? into at least 7 4 1 regions. We see that
r =1 is impossible, as the only region graph on a single curve is P». We see by Lemma
that = 2 is also impossible. Now suppose 3 < r < v — 1, and our curves are
{71,72,-..,7%}. Then the fact every region is adjacent to every other implies that the
code for a given region can differ from every other region’s code in at most one place.
Suppose we take a region with code zyzy...z,_12, where x; € {0,1}. Then without
loss of generality, assume the code for every other region is of the form yzs...x,_12,,

where 21 # y € {0,1}. But this implies every region is on the same side of every curve
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Y2, ...,7. But this is impossible, every curve v; divides S? into exactly two non-empty
regions, and so we must have at least two regions which differ at a given index in their
code. Hence we have a contradiction, and so K, cannot be a region graph for a collection
of r < v —1 curves, and so cannot be a region graph at all. Ergo, we have shown the

only complete region graphs on Jordan curves embedded in S? are K; and K». O

Note that for the above proof it is not necessary to classify all region graphs R,
on two curves, or even those for one curve. Every region has a code of 1 or 2 digits in
either case, and it is guaranteed that there are at least two regions which differ in the
i*" index by the Jordan curve theorem.

Lemmal6.7]implies that region graphs do not form a hereditary or minor-closed graph
class. For example, R3 contains K3 as an induced subgraph and as a minor, but K3 is

not a region graph.

In the examples of we used at least four curves to construct an arrangement
containing vertices with the same code that are not adjacent in the corresponding region
graph. Are there any ways to construct non-adjacent vertices with the same code for
three or fewer curves? For three, the answer is yes as Figure [6.4] demonstrates. For two

and below, the answer is no, as Lemma [6.8| shows.

Figure 6.4: An arrangement of three curves such that the two hatched regions are non-
adjacent and have the same code.
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Lemma 6.8. A region graph on r curves may contain non-adjacent vertices with the

same code if and only if r > 3.

Proof. We have already seen examples for r = 3,4. To construct a region graph on
r > 4 vertices with non-adjacent vertices with the same code, add r — 3 disjoint circles
intersecting no other curves into a single region of the arrangement in Figure This
corresponds to adding a tree sharing the vertex of this region. This cannot connect the
two non-adjacent regions with the same code, and so we have a graph on r curves with
a pair of such regions.

We now tackle the forwards implication. If » = 0, then we have a single region and
so the result holds trivially. If » = 1, then we have exactly two regions which necessarily
differ in their codes. If r = 2, then we can have many regions with the same code, but as
demonstrated in Lemma [6.1] all vertices with the same codes are contained in a clique

and so there are no non-adjacent vertices with the same code. O

We end this section by demonstrating that a region graph on J need not be con-

nected.
Lemma 6.9. There are disconnected region graphs on J.

Proof. For a region graph on a class of curves to have multiple connected components, we
must have some “double enclosing”. By this, we mean that some curve in our collection
must lie along at least one other curve at all points, see Figure[6.5a] This ensures that the
boundary of some region is “doubled up”, in the sense that every point of the boundary
of the region is contained in at least two distinct curves. Thus removing any single curve
cannot merge the region with any other. In a similar vein we may have some arbitrary
finite collection of curves contained entirely within a region which is double enclosed.
This then demonstrates we may have non-trivial connected components in such a region
graph.

Let us now show that double enclosure is necessary for disconnectedness of a region
graph. Let us assume that our region graph has an isolated vertex. Suppose this region
is not double enclosed. Then there must be some portion of the boundary of the region
that lies on only a single curve. Removing this curve necessarily merges the region
with another, contradicting our assumption that the region is isolated. Thus “double
enclosure” is necessary and sufficient for a region to be isolated in a region graph.

Furthermore, as we assume our region graph is on a finite collection of curves, we must

have some arc-incidence along the boundary; we cannot double up an entire boundary
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just via point-incidence using only finitely many curves with finitely many intersections.
O

As a corollary of Lemma[6.9] we can determine that all finite forests are indeed region

graphs.

6.4 Region graphs on C?

As seen in the previous section, region graphs on general curves are in general extremely
complex, and the task of characterising them seems intractable. However, if we instead
focus on circles on S?, there is much we can say about region graphs. To begin with, we
must justify what is meant by a region graph on C?, whose vertices are chords rather than
curves. We recall that C? is isomorphic to the intersection graph of circles embedded
in S?2. Every chord defines a unique embedded circle and vice versa, and hence the
intersection graph of circles embedded on S? has all of the properties proven in Chapter
In this way we justify our terminology around region graphs on C?. Two circles which
are tangent shall be referred to as incident as in Chapter [2|and two circles intersecting at
two distinct points overlap. A finite collection of circles corresponds to a finite induced
subgraph of C2.

We begin with a simple lemma, which demonstrates a crucial difference between

region graphs on J and those on C2.
Lemma 6.10. Every region graph on C? is connected.

Proof. By Lemma we see that to have double enclosure of a region, we must have
arc-incidence along its boundary. Therefore, if our curves are all circles, then we must
have arc-incident circles in our collection. But circles that agree along an arc must
be the same, contradicting our assumption that our region graph is on distinct curves.
Hence such an arrangement is impossible on C?, and so all such region graphs must be

connected. O

Remark We can put bounds on the number of vertices of a region graph of a collection
of r circles. In particular, a lower bound is r + 1 which can be achieved if all r circles are
disjoint. The upper bound is 2 — 4+ 2 which may be achieved if the r circles pairwise
overlap and there are no multiple intersection points.

This implies C5 is not a region graph on any number of circles by the following. For

r < 3 the upper bound on the number of vertices is less than five. If r > 4 the lower
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(a) Four black rectangular curves, and
an orientated red curve which lies en-
tirely along the boundaries of the other
four. The region to the left of the red
curve cannot be merged with any other

region by removing a single curve, and (b) Example of a non-perfect region graph; the green
so is isolated in the corresponding re- vertices induce a C5, so by the Strong Perfect Graph
gion graph. theorem, this region graph is not perfect.

Figure 6.5

bound on the number of vertices is greater than five. We will see in our classification of
region graphs on three circles in that C5 is not a possible region graph - see Figure
The only way for four circles to produce five regions is if all existing intersections are
incidences. The only region graphs of such arrangements are the trees with five vertices,
Ps, chair and K1 4.

Remark Lemma begs the question of whether all region graphs are perfect. This is
not true, consider Figure formed of circles in C2.
6.4.1 Region graphs of small collections of circles

To classify region graphs on circles, the most obvious method is to find all region graphs
on collections of 7 circles, with any pattern of overlaps. This is possible for small r, but
quickly becomes intractable.

Let us list the region graphs of up to three circles.

Zero circles: The only region graph on the empty collection is the single vertex graph,
K.

One circle: The only region graph on a single circle is Ks.

Two circles: There are exactly two region graphs on two circles: the path Ps, and the

4-cycle Cy.

70



Three circles: Up to isomorphism, there are eleven region graphs on three circles.
These are shown in Figure

— /N

AR KR EW

Figure 6.6: Region graphs on three circles.

In order to classify the region graphs on r circles, it is necessary to enumerate all
possible arrangements of r circles on S? up to Mébius transformation. That is to say, two
arrangements are considered the same if there is a Mobius transformation which sends
one to the other. This is not a trivial task, and so we would seek to lessen the number of
configurations that must be calculated; this will be the focus of the next section. There
is one arrangement for a single circle, three for a pair, and nineteen for three circles. See
Figure for an illustration of those arrangements of three circles.

Note that we must allow tangency (incidence) and multiple intersection points in our
configurations. It is then a simple computational task to find all non-isomorphic region
graphs on such arrangements. In fact, the study of region graphs on circles lends itself
to computational methods. Several of the results in this chapter were inspired by the
analysis of region graphs of small (< 15) randomly generated collections of circles. We
have provided the code used to generate these collections, as well as to calculate the
corresponding region graph, in Appendix [C]| Most analysis of the graphs was done via
SageMath.

Given that there are nineteen arrangements of three circles on the sphere, and only
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eleven region graphs, this implies that region graphs do not encode all topological infor-

mation of a corresponding arrangement of circles.

6.4.2 Region graphs on collections with few pairwise intersections

In it is clear that for r > 3 circles, the number of arrangements that must be
analysed quickly grows. We can instead focus on finite collections of arbitrary size,
where individual circles cannot intersect more than some number of other circles I. This
approach lessens the number of arrangements that must be calculated. We say the
degree of a circle in a collection is the number of other circles it intersects. Recall that
we distinguish two arrangements only up to Mobius transformation.

Our aim in this section is to classify the region graphs on collections of circles with
maximum degree at most three. We also demonstrate an inductive method to construct
a region graph on a collection with maximum degree k.

Let us first define some terminology. A block in a graph G is a maximal biconnected
subgraph of G. A biconnected graph is a connected graph such that deleting any single
vertex does not disconnect it. A chain of circles is a finite sequence of circles such
that consecutive circles may intersect, either incidentally or by overlapping, and no
other pairwise intersections occur. The length of a chain is the number of circles it
contains. An incident chain is a chain in which the only intersections are incident, and
an overlapping chain is a chain in which all intersections are overlaps. See Figure for
some examples. A loop is a chain in which the first and last circles may also intersect;
the same terminology used for chains also applies to loops. We also insist that loops are

of length four or greater.

8D OO0

Figure 6.7: An overlapping chain of length six (left) and an incident chain of length five
(right). A chain could also contain both overlaps and incidences.

We denote the class of region graphs for finite collections of circles on S? where a
given circle can intersect at most I others Circley. It is then clear that for I = k,
Circleg C Clircley C ...Clircleg—1 C Circley, C Clircleg+q C .. ..
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Collections of circles with I =0

The induced subgraph of C? of such a collection of circles is an independent set. The
only region graphs on r disjoint (as I = 0) circles are the trees on r vertices, which
can be seen as follows. We have only a single operation for modifying a given collection
of disjoint circles. This operation is to add another disjoint circle. Such a circle may
contain some portion of the given collection in both sides. Within the region graph,
this corresponds to splitting the articulation vertex connecting the collections on either
side in two, such that each split vertex is the root of the region graphs of the collections
contained in either side. The two vertices should be adjacent to one another. Repeating
this iteratively we can obtain any tree. Hence we see that Circleg is exactly the class of
trees.

We also note that the trees are those connected graphs in which all blocks are single

edges.

Collections of circles with I =1

In this case, given a circle, it can either be disjoint from all others, be incident to a
single other circle, or overlap a single other circle. The induced subgraph of C? of such
an arrangement is a graph with maximum degree one. Let us start with a collection
of disjoint circles. The region graph of such an arrangement is a tree, as shown in the
previous section. We iteratively modify the starting collection where the possible ways

to add a circle are:

(i) Adding a disjoint circle to a region. This is an operation already available in the

case I = 0. See Step 6 of Figure [6.§] for an example.

(ii) Adding a circle to a region, incident to a single circle on the boundary of this
region. Within the region graph, this turns a Ky into a Ps, which is equivalent
to adding a pendant vertex. So in fact this is equivalent to operation (i) in its
modification of the region graph. We could achieve the same change to the region
graph by adding a disjoint circle to the same region with the same circles in each

hemisphere. See Step 3 of Figure for an example.

(iii) Adding a circle that overlaps a single existing member of the collection. Such a
circle can only intersect two regions, the regions bounded by the circle it overlaps.
Within the region graph, this corresponds to expanding an edge xy into a 4-cycle

by adding two new vertices u,v and the edges ux,uv,vy. See Steps 5, 7 and 9 of
Figure [6.§] for examples.
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Each of these is what we will call an addition operation or operation for short of
Clircley.

In general, for Circley, all operations in classes Circle; with [ < k are available,
but we also have new operations, allowing us to create circles of degree k, which are not
available in lower classes; we will call such operations semi-saturating. A semi-saturating
operation takes a collection which has maximum degree at most k — 1, and adds a new
circle in such a way that either the added circle or one of its neighbours is of degree k.
We term a semi-saturating operation such that the added circle and all of its neighbours
are of degree k saturating.

These may be interpreted as modifications of the intersection graph of a collection
of circles. It must be kept in mind that the intersection graph does not encode all topo-
logical information about an arrangement of circles; so to recover the region graph we
must keep track of the collection of circles itself. Within the intersection graph, a semi-
saturating operation of order k consists of adding a new vertex v and at most k edges
incident to v, such that at least one vertex incident to a newly added edge is of degree k.
A saturating operation is then the same operation, but with the stronger requirement

that all vertices incident to the added edges are of degree k.

Before characterising the graphs in Circle; and determining the structure of graphs

in Circles, let us first demonstrate the utility of semi-saturating operations.

6.4.3 An algorithm for recursively constructing a region graph in Circley

Given our definitions for semi-saturating and saturating operations, it is natural to ask
if all graphs in Circlep can be obtained from a graph in Circlei_1 using just semi-
saturating operations or saturating operations. We first show this result is true of semi-

saturating operations.

Lemma 6.11. Any G € Clircley can be obtained from a graph G' € Circle,_y1 through

only semi-saturating operations.

Proof. Suppose we have a graph G € Clircle;, and a corresponding arrangement of circles.
We work in the intersection graph, H, of the collection of circles by a recursive series of
vertex deletions.

Firstly, note that A(H) < k as a result of the corresponding collection of circles.
At a given step delete a vertex of degree k, which corresponds to removing a circle of
degree k from the starting collection. Create a list L of these deletions, appending each

removal to the end of this list. Such a deletion reduces the degree of any neighbouring
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vertices by one. Continue to do so until there are no vertices of degree k left, so all
remaining vertices are of degree at most k¥ — 1. This corresponds to a collection of
circles of maximum degree k — 1, and so the associated region graph G’ is a member
of Circler_1. Also note that this process will terminate at a finite step, as our initial
collection is finite by assumption.

Now we reverse this process, by reading L right to left and adding in the required
vertices and edges step by step. Each such addition is a semi-saturating operation by
definition, as we are adding in a circle of degree k. We do indeed recover G in its entirety
through these additions. So this demonstrates that G' may be recovered from G’ by a

series of semi-saturating operations of C'ircley. O

The above lemma demonstrates that the only “meaningful” operations of Clircley,
are its semi-saturating operations. When applied to Circle;, this means we can start
with a tree, and add only incident or overlapping circles to obtain any member.

As may be expected, we can determine an even stronger result from Lemma [6.11

Corollary 6.1. Given G € Clirclex, we may obtain G by starting from an empty col-
lection of circles, and applying semi-saturating operations in Circley, then Circley, ...

and then in Circley, in that order.

Proof. We follow a proof by induction. For k = 0, we have already shown that every tree
can be obtained from the single vertex graph by the single operation - which is semi-
saturating - of Clircleg. Now assume the inductive hypothesis holds for all graphs in
Clircleg_1. Then take a graph G € Clircleg, and a corresponding arrangement of circles.
Follow the proof of Lemma[6.11] to remove circles of degree k. Then the maximum degree
of any circle in the resulting arrangement is k — 1, and so the corresponding region graph
H is in Circleg_1. Then add the removed circles back in to obtain G from H by only

semi-saturating operations of Circle;. Thus the statement of the corollary holds. O

The same is not true of saturating operations. A chain of length greater than five, for
example, necessarily requires semi-saturating but not saturating operations of Clircles

to construct.

Let us make some observations that are a consequence of Lemma and Corollary
0.1

Observation 6.1 Any sequence of operations (whether non-saturating, semi- or satu-

rating) that results in the same collection of circles, up to Mobius transformation, will
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give us the same region graph. This is because every collection of circles has a unique
region graph - although each region graph does not necessarily have a unique collection
of circles, as Figure demonstrates. Furthermore, given a particular sequence of op-
erations, we may permute the Circley operations, then permute the Circle; operations
and so on. At no point can we create a circle with degree greater than [ by performing

the Clircle; operations in a different order.

Observation 6.2 To get G € Clircle, we can start from the single vertex graph. As we
perform operations in Clircle;, | < k, we may label the added edges. In particular, those
edges corresponding to adjacency to a region at least partially bounded by a circle of
degree [ should be labelled. Then labelled edges cannot again be modified, until we start
applying operations from Circle;yq; this would require adding a circle exceeding degree
[. As our operations are semi-saturating, we may not need to label all edges created
in such an operation. If instead an operation is saturating, then all new edges must be
labelled.

Then assuming semi-saturating operations for [ < k are known, if we are able to
find all such operations of Circley, we may construct all associated region graphs. The
task of finding all such operations is non-trivial. One must determine all of the distinct
arrangements of circles up to Mébius transformation of maximum degree k that achieve
this maximum. This is, however, a significant reduction in the number of arrangements

that must be determined than in §6.4.1]

Due to Lemma [6.11] we see that graphs in C'ircle; have the following characterisation.

A graph G is in Circle; if and only if it is connected and all cycles in G are

of length four, and any pair of cycles shares at most one vertex.

This is exactly the class of cactus graphs containing only 4-cycles and 2-cycles [35].
Equivalently, these are the connected graphs whose blocks are either an edge or Cy. All
such graphs are planar and perfect.

Based on Observation [6.2] we can colour the edges of an added 4-cycle, and colour
the edges of a P3 resulting from adding an incident circle. Adding a disjoint circle
corresponds to adding an uncoloured edge. Coloured edges cannot then be enlarged
to 4-cycles. We can clearly add an uncoloured edge adjacent to any given vertex, by
inserting a disjoint circle in the corresponding region. See Figure for an example of

building up a graph in Circle;.
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8. 9.

Figure 6.8: In this example we build a graph in Circle; from a single vertex via operations
(i), (ii) and (iii). We colour edges of 4-cycles blue and the edges corresponding to an
incident pair green. Edges corresponding to uncoloured edges are red. It is clear from
Lemmathat we could reach step 9 from a different starting tree in only 4 operations.

Collections of circles with [ =2

By analysing all semi-saturating operations of Circles, we can determine the structure
of all graphs in this class. We list all such operations in Appendix [B|as there are a large
number of possible operations. Before characterising the graphs of Clircles, let us first

define Loop C Clircles, the class containing all region graphs of loops.

Definition 6.1 A graph G € Loop is a graph that may constructed in the following

manner:

1. Begin by taking a disjoint union of isolated vertices and paths of odd length,

Py =z ... Top 1.

2. Add a vertex adjacent to all isolated vertices and alternating vertices x1, x3, . . . Togi1

of each path. The resulting graph is the region graph of a chain of circles, see Figure
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[6.91 Let us call this added vertex v.
3. Add a new vertex v’ such that N(v") = N(v) U{v}.

The result is the region graph of a loop. The odd length paths result in 4-cycles
which represent the overlapping circles, while the single vertices represent the incident

circles. See Figure for an example.

(a) A region graph of a chain. The
addition of the purple circle is a satu- (b) A region graph of a loop. The addition of the
rating operation. purple circle is a saturating operation.

Figure 6.9: In both cases, we may start with the black circles and add the purple circle.
New edges and vertices created by this operation are blue and purple respectively.

Also note that Loop C Clircles, but Loop N Circle; = @ and that all graphs in Loop
are biconnected. Furthermore, within the region graph of a chain, we get sequences of
4-cycles, with each pair of consecutive 4-cycles sharing a single edge. These correspond
to overlapping sequences of circles within the chain. Such a graph is biconnected, and
may be expressed as an odd length path with a single vertex adjacent to every other
vertex of the path, including the end vertices. Given this, we can now characterise those

graphs in Clircles.
Lemma 6.12. A graph G is in Circles if and only if it is connected and its blocks are:
(’i) K2 or C4

(ii) One of the graphs listed in Figure - excluding Py, K13 and 4-pan as these are

not biconnected.

(iii) An odd length path x1x2...%ok41 with a vertex adjacent to x1,x3. .. Togt1-
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(iv) A graph in Loop.

Proof. The forward direction follows from the list of semi-saturating operations of C'ircleg
in Appendix Bl and that all graphs in (i), (ii), (iii) and (iv) are biconnected. No region
graph of a non-overlapping chain is biconnected; we may remove the vertex correspond-
ing to Step 2 of Definition [6.1

For the backward direction suppose we have a graph with such blocks. Then every
such block corresponds exactly to an arrangement of circles with maximum degree two.
Where two blocks share a vertex, one arrangement of circles must be contained in the
region corresponding to the shared vertex. By these deductions we may then construct

an arrangement of circles with region graph exactly the graph we started with. O
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Chapter 7
Concluding remarks

We began this dissertation with a short overview of the higher-dimensional analogues
of Mobius transformations, and demonstrated several useful properties of such maps.
We then proceeded to show their relationship to the d-sphere graph in answering Ques-
tion Subsequently, we were able to recover the entire automorphism group of S? by
generalising the allowable curves in our intersection graph, and investigated those home-
omorphisms of S? that preserve C* Jordan curves. We ended by analysing the properties
of region graphs and explored several more tractable classes of region graphs of circular

curves. In this conclusion, we will discuss further work that may be done in these areas.

To begin with, the topic of Mobius transformations is a well-studied area. In this way,
what we have demonstrated in the first chapter merely skims the surface. For example,
[8] and [9] both go into far more depth on the structure of the d-dimensional M&bius
group and its links to hyperbolic geometry. There is also much to be said on the links be-
tween Mobius transformations and conformal mappings - those functions that preserve
angles, which [9] focuses on. We also made a brief mention of Clifford algebras, and
would refer the reader to several papers on the links between Mobius transformations
and Clifford algebras [36] [37][38].

In Chapter |3 we were able to answer Question However, there are plenty of other
open questions concerning sphere graphs.

As an example, in [I], Georgakopoulos was able to demonstrate that Cg is a strongly
universal element for the class of countable circle graphs. In this case, a circle graph is
an induced subgraph of C and more generally, a d-sphere graph is an induced subgraph of

C%. The graph Cg is the intersection graph of those chords whose endpoints are rational,
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where we identify S' with [0,1]. A graph U is strongly universal for a graph class D if
every G € D is an induced subgraph of U. It is unknown whether there is a strongly
universal element for the class of countable d-sphere graphs for every d > 1.

Georgakopoulos has also shown that Cqg is invariant under local complementation
- swapping the edges and non-edges in N(v) for some vertex v. An open question is
whether there are any non-empty, connected, countably infinite and vertex-transitive
graphs that are invariant under local complementation, which are not isomorphic to the
Rado graph or Cg. In particular, would a strongly universal element of the class of
d-sphere graphs for some d > 1 satisfy this property, thereby providing infinitely many
examples?

One could also determine whether there are any finite d-sphere graphs which are

invariant under local complementation.

Within Chapter 4| we were able to find a natural graph J such that Aut(J) is iso-
morphic to Aut(S?). It seems likely a method of proof similar to ours should generalise
to higher dimensions. In particular, one could consider the intersection graph J¢ of the
continuous, injective maps 7 : Sé-1 Sd, in which case J = J*. More care would need
to be taken around wild embeddings, such as the Alexander horned sphere.

It would then be another natural generalisation to consider the smooth Jordan curves
in higher dimensions. One could also analyse other classes of Jordan curves. For ex-
ample, in Lemma we relied on the fact that two circular curves on S? that agree
on an arc must be the same. One could then consider the real-analytic Jordan curves,
in which the same property holds. Rectifiable Jordan curves, which are those curves of

finite length, may also provide a fruitful path of exploration.

Within Chapter [6] we hope to have demonstrated some interesting results that arise
from this seemingly novel method of graph construction. There is much more work
that may be done on these graphs. For example, we were able to classify Circler for
I =0,1,2 by admissible blocks. Is it true that every such class Circle; admits such a
characterisation via admissible blocks? Furthermore, one may ask whether it is truly
necessary to calculate all suitable arrangements of circles up to Mobius transformation
to find these region graphs, or whether there exists some more tractable combinatorial
method to determine them. It seems likely that the case for I = 3 and perhaps for I = 4
could be solved through the first method computationally, but beyond this we expect a
different approach would be needed.

We also noted that region graphs do not encode all topological information of a
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collection of curves in general. There are several simple examples of collections of circles
with the same intersection graph and the same region graph, but which are topologically
distinct. Consider Figure [7.1] for example.

Figure 7.1: Topologically distinct arrangements of circles with the same intersection and
region graphs.

In both arrangements, the cyclic order of incidences around the large circle differ. It
is immediately clear that the intersection graphs are the same, and one can quickly verify
that the region graphs agree. This demonstrates that even the pair of the intersection
graph and the region graph does not encode the entire topology in general. Could one
find an invariant such as the region graph, that encodes all topological information about
a given set of curves? One potential candidate is a multigraph equivalent of the region
graph. Again, vertices correspond to topological components. Between each pair of
vertices, add edges each corresponding to a distinct sequence of curve removals that
merge the two regions. One could reverse the question, and ask if there is much to be

said about those arrangements whose topology region graphs do determine.
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Appendix A

Arrangements of circles
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Figure A.1: The 19 arrangements of three circles on the 2-sphere up to Mdébius trans-
formation
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Appendix B

Semi-saturating operations of

Circles

We list all semi-saturating operations of C'ircles. Within our demonstrative diagrams,
we consider an existing pair of circles, in black, and add a third purple circle. We then
show the change to the corresponding region graph, where any new edges are blue and
new vertices are purple. Figures demonstrate operations on a disjoint pair of
circles, which are all semi-saturating, except for two cases outlined in Figures and
Figures demonstrate operations on an incident pair. Finally, Figures
demonstrate operations on an overlapping pair. Note that in each case, there may
be another way of obtaining the same collection via a different sequence of operations.

As we remarked, this does not affect the resulting modification to the region graph.

c
c c
a b a d b

Figure B.1: Operation I: Add a circle incident to both, such that both original circles
are on the same side. This adds a pendant vertex to the region bounded by both circles,
turning a P into a K 3 by adding a single vertex and a single edge. This is equivalent
to adding a single circle incident to an existing circle of degree one.
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Figure B.2: Operation II: Add a circle incident to both such that each is on a different
side. This turns a P3 into a P, by splitting a vertex and adding an edge. This is
equivalent to adding a circle incident to an existing circle of degree one, on the opposite
side to its existing neighbour.

C
c c
d
a b a . b

Figure B.3: Operation III: Add a circle incident to one and overlapping the other. This
adds a 4-cycle to a single edge of the Ps, by adding two vertices and three edges.

LD A

Figure B.4: Operation IV: Add a circle overlapping both. This turns a P3 into two
4-cycles sharing an edge, by adding three vertices and five edges.
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(b) Joining up the ends of a chain to form a loop

(a) An example of operation (iii) where via operation (iii). Such an operation takes a region
each disjoint circle is of degree one. graph as in Figure (a) and adds a new vertex corre-
This diagram also demonstrates what sponding to a new entrapped region. Such a vertex
the region graph of a chain looks like, a mirrors the upper vertex in Figure (a) and is adjacent
single vertex with runs of 4-cycles and to it; removing any single circle from the loop merges
pendant vertices. the entrapped and outer regions.

Figure B.5

c
c c d
" /\ J 8
a b a b
Figure B.6: Operation V: Add a circle incident to both such that there is a triple point.

This operation turns a P into a Py, and so is analogous to operation (ii).
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c
Figure B.7: Operation VI: Add a circle incident to both such that there is no triple
point. Such an operation takes a Ps and adds edges and vertices such that we get three

3-cycles sharing an edge. This is exactly the operation in Figure [6.9D] where we join the
ends of an incident chain of length two.

S

Figure B.8: Operation VII: Add a third which overlaps both and that creates two regions
with the same code.

d d
d
e f
’)
@ b a b
c c
Figure B.9: Operation VIII: A third which overlaps both such that we obtain two triple

points.
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Figure B.10: Operation IX: Add a third overlapping one and incident to the other with
no triple points.

d d
( —
a b ¢ f
C e

Figure B.11: Operation X: The above, but with a triple point.

d d
M ; e
s
@ b T, . b
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Figure B.12: Operation XI: Add a third incident to both, with both on the same side of
the new circle.

d
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Figure B.13: Operation XII: Add a third incident to both, with the new circle being on
opposite sides of the overlapping pair.

d
d d
P LR g — b
2 N
¢ / 9
e

Figure B.14: Operation XIII: Add a third overlapping both such that we obtain a single

; - ab
ey fg

Figure B.15: Operation XIV: Adding a circle such that we get eight regions and no triple
points. Observe that this turns a 4-cycle into a cube graph.
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Appendix C

Code for generating region graphs

on circles

import numpy as np

from numpy import random

import matplotlib.pyplot as plt
import networkx as nx

from shapely.geometry import Point

from shapely.ops import unary_union, polygonize

def generate_circle(centre, radius, num_points=500):
"""Returns a shapely geometry for a circle of given centre and radius
. nnn
return Point (centre) .buffer (radius, resolution=num_points), centre,

radius

def generate_circles(n):
"""Generates n centres and radii to be converted to shapely

geometries."""

centres = 1.5 * random.rand(n,2) # Spread out along x-axis
radii = random.rand(n, 1)
centres_radii = []

for i in range (0, n):
centres_radii.append([centres[i], radii[ill)

return [generate_circle(centre, random.rand()) for centre in centres]

def compute_regions_with_outside(circles, buffer=10):
"""Finds the distinct topological regions within the arrangement of
circles,

and returns them as shapely geometries."""
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41

60

61

62

63

64

def

boundaries = [circle.boundary for circle in circles]

merged_lines = unary_union(boundaries)

regions = [geom for geom in polygonize(merged_lines)]

return regions

build_region_graph(circles):

"""Takes a collection of n circles,

finds the topological regions

and then iteratively removes circles to check which regions are

adjacent in the corresponding region graph."""

# Adds a circle which allows us to add an

circles [0].append (Point ([0, 0]) .buffer (10,

"outside" region

resolution=200))

circles [1]. append(np.array ([0, 0]))

circles [2].append (10)

# Finds regions

full _regions = compute_regions_with_outside(circles[0])

# Adds regions to region graph

@ =

for

nx.Graph ()

i, region in enumerate(full_regions):

G.add_node (i, shape=region)

# Removes a single circle and calculates new regions

idx, removed_circle in enumerate(circles[0][:-1]):

it must have merged with

for
remaining = []
for j, ¢ in enumerate(circles[0]):
if j != idx:
remaining.append(c)
new_regions = compute_regions_with_outside (remaining)
# If a new region contains an old one,
another

for j, new_region in enumerate(new_regions):

merged = []

for i, old_region in enumerate(full_regions):

intersection = new_region.intersection(old_region)

# Accounts for imprecision of shapely geometries

if intersection.area / old_region.area > 0.98:

merged . append (i)
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66 # Add edges to the region graph between regions merged by
removal of this circle

67 for i in merged:

68 for k in merged:

69 if i < k:

70 G.add_edge(i, k, removed_circle=idx)

71 return G, full_regions, circles

73 def plot_regions_and_graph(G, regions, circles):

74 """Plot the arrangement of circles, and label distinct topological
regions.

75 Also draw the corresponding region graph."""

76 fig, ax = plt.subplots()

77 label_positions = []

79 # Plot the arrangement of circles

80 for i, circle in enumerate(circles[0]):

81 temp = plt.Circle(circles[1][i], circles[2][i], color="b", fill=
False)

82 ax.add_artist (temp)

83

84 # Colour and label regions, and add node to each region

85 for i, region in reversed(list (enumerate(regions))):

86 X, y = region.exterior.xy

87 ax.fill(x, y, alpha=0.5, label=f"Region {il}")

88 if i == len(regiomns) - 1:

89 ax.plot (-1, -1, marker="o", color="black", markersize=4)

90 label_positions.append([-1, -1])

91 else:

92 point = region.representative_point ()

93 ax.plot (point.x, point.y, marker="o", color="black",

markersize=4)

94 label_positions.insert (0, [point.x, point.yl)
95

96 print ("EDGES:", G.edges)

97

98 # Plot line between merged regions

99 for u, v in G.edges:

100 x1, y1 = label_positions[u]

101 X2, y2 = label_positions/[v]

102 ax.plot ([x1, x2], [y1, y2], "k-", alpha=0.5)
103

104 # Configure plot and display

105 ax.set_aspect ("equal")
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106

107

108

109

110

1

1

112

113

115

116

117

118

138

139

140

141

ax.set_xlim(-1.5, 2.5)
ax.set_ylim(-1.5, 2.5)

plt.title(f"Region Graph of {len(circles[0]) -1} circles")

plt.show()

# Contains generated region graphs as nodes and edges

region_graph_list=[]

# Number of circles region graph is on

circle_num

(1

# List of circles region graph is on, as centres and radii

circles_list

# Number of circles to generate region graph on,

(1

below to generate desired graphs. Currently set

# to generate 9000 region graphs on increasing number of circles.

or more circles gemneration is fairly slow.

n=0

for i in range (0,

if

if

if

if

if

if

if

if

if

if

if

# Adds data to lists for export

0 <=

n =

200 <=

n =
1000
n =
2000
n =
3000
n =
4000
n =
5000
n =
6000
n =
7000
n =
8000
n =
8599

n =

i <=

4

5

i

<

9000) :

199:

999:

= 1999:

= 2999:

= 3999:

= 4999:

= 5999:

= 6999:

= 7999:

= 8499:

= 8999:
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circle_num.append(n)

circles_temp = generate_circles(n)

circles_polygons = [[circles_temp[j]l[0] for j in range(O0, n)], [
circles_temp[jl[1] for j in range(0, n)],

[circles_temp[jl[2] for j in range (0, n)]]
circles_list.append([[list(circles_temp[k][1]), circles_temp[k][2]]
for k in range (0, n)])
region_graph, regions, circles2 = build_region_graph(circles_polygons
)
region_graph_list.append(list(region_graph.edges))

# Prints most recently generated region graph and associated
information

print ("Edges", region_graph.edges)

print ("circle_layout", circles_list)

print (£"GENERATED {i}th GRAPH")

# Formats outputs for analysis in Mathematica

2 print (region_graph_list)

formatted = str(region_graph_list).replace("[", "{").replace("]", "}").
replace (" (", "{").replace(")", "}")

formatted2 = "\n"+str(circle_num) .replace("[", "{").replace("]", "}").
replace (" (", "{").replace(")", "}")

formatted3 = "\n"+str(circles_list)

# Write to text file

with open("GraphsOutputRandom9000.txt", "w") as f:
f.write(formatted)
f.write(formatted2)
f.write(formatted3)
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