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Abstract

By answering a question of A. Georgakopoulos, we generalise a result stating that the

automorphism group of the intersection graph of the chords of the 1-sphere is isomorphic

to the group of homeomorphisms of the 1-sphere to higher dimensions. We subsequently

investigate the automorphism groups of intersection graphs of more general classes of

curves on the 2-sphere and demonstrate that the class of Jordan curves is sufficient to

recover the entire automorphism group of the 2-sphere. We conclude by providing ex-

amples of an important invariant, which we term the region graph, used throughout this

dissertation. We also examine the properties of such graphs on the classes of curves

investigated in earlier chapters.
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Chapter 1

Introduction

In a recent paper, A. Georgakopoulos has provided a natural graph C, such that Aut(C)
is isomorphic to Aut(S1), the group of homeomorphisms of the 1-sphere [1]. The study

of Aut(S1) is a classical topic, blending many areas of study; we refer the reader to

several surveys and monographs of the area for further reading [2][3][4]. The graph C
is termed the circle graph; the graph whose vertex set consists of the chords of S1 and

where two chords share an edge if and only if they intersect on or within S1. Such a

graph is an intersection graph, a graph whose vertices are objects, and edges exist only

between those objects which have non-empty intersection. We again refer the reader to

several summary texts which have been written on the topic of intersection graphs [5][6].

It is natural to consider higher-dimensional analogues of this problem. In particular,

we can consider the sphere graph, Cd, of the d-sphere, where C1 = C. The vertices of

such a graph are the chords of Sd, where a chord is the non-empty intersection of a

non-tangential d-plane with the closed ball Dd+1 in Rd+1. Georgakopoulos proposed the

following question in the aforementioned paper, which this dissertation seeks to answer:

Question 1 Is Aut(Sd) isomorphic to Aut(Cd) for every d > 1?

We show that this is false for d ≥ 2 and that Aut(Cd) is in fact isomorphic to the

group of Möbius transformations of the d-sphere, which we denote Möb(Sd), for d ≥ 2.

Many readers will be familiar with Möbius transformations of Ĉ, but may be less familiar

with their higher-dimensional relatives. We introduce the reader to such transformations

of R̂d in Chapter 2, blending material from several texts to provide a solid overview of

these maps. We proceed by demonstrating how such maps may be transferred to the

d-sphere via stereographic projection, showing that such projections are in fact Möbius
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transformations themselves. We encounter various properties of Möbius transformations

that prove useful in answering Question 1 and end by showing a characterisation of

Möbius transformations via chordal spheres. A chordal sphere of R̂d is a (d− 1)-sphere

or d-plane; under stereographic projection, these are sent to chords of Sd+1, which makes

clear their name.

In all later chapters most material will constitute original work, except where other-

wise credited.

In Chapter 3 we prove our stated answer to Question 1. We follow a method of proof

inspired by that of the original result and introduce several useful invariants under auto-

morphisms of Cd, including what we term region graphs. Such invariants heavily restrict

the possible symmetries of the sphere graphs and allow us to prove many unexpected

properties of automorphisms of Cd. For example, such automorphisms distinguish be-

tween types of intersection, despite this information not being explicitly encoded in Cd.

We further show that such invariants can be extended to more general classes of simple

closed curve.

In order to construct an isomorphism between the two groups, much like Geor-

gakopoulos, we build boundary cliques - the induced subgraphs on those vertices of Cd

that contain a given point on Sd. We demonstrate that the action of an automorphism

h ∈ Cd on boundary cliques provides a well-defined map of points on Sd and thereby

construct a homeomorphism. We end by demonstrating a homeomorphism constructed

in this manner must satisfy a characterisation of Möbius transformations proved in Lem-

mas 2.5 and 2.6. We construct our method of proof to also cover the case of d = 1, and

hence we are able to provide an alternative method of proof to that of Georgakopoulos.

We consequently demonstrate that the methods used in proving this result provide a

purely combinatorial way to extend the action of the Möbius group to the interior of Sd.
We conclude the chapter by making several observations on the structure of Cd and its

automorphism group.

In Chapter 4 we look to find a natural graph whose automorphism group is isomorphic to

Aut(S2), to recover a result analogous to that of Georgakopoulos in higher dimensions.

We prove that the intersection graph J whose vertices are the Jordan curves on S2 is

such a graph, by extending methods of proof developed through the prior chapter. A

Jordan curve is the image of an injective and continuous map from S1 to S2. We discuss

the pathological nature of many such curves and give a summary of several crucial re-

sults which allow us to tackle the problems these curves present.
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In Chapter 5 we focus on the intersection graphs Sk of the Ck Jordan curves on S2,
where k ∈ N≥0 ∪ {∞}. We provide a brief summary of smooth manifolds to justify our

analysis of such classes of simple closed curves. We show that the subgroup of Aut(S2)
isomorphic to Aut(Sk) is in fact larger than the subgroup of Ck homeomorphisms of

the 2-sphere, by augmenting a recent proof of Le Roux and Wolff [7]. In doing so we

demonstrate that there are non-Ck homeomorphisms which preserve all simple closed

Ck curves.

Finally, in Chapter 6 we explore region graphs further, demonstrating various prop-

erties of these graphs in different dimensions. Highlighting some unexpected cases of

region graphs that arise when considering curves in J or Sk, we suggest that the case

for circular curves on S2 is the most tractable. We classify all finite region graphs on

two curves in J and show that such region graphs are perfect. By this classification we

demonstrate quite how complex region graphs may become, even on small numbers of

curves, when considering more general classes of curve. We demonstrate that for any

finite number of Jordan curves on S2, there are planar region graphs, and provide ex-

amples of region graphs that are not perfect. We classify all region graphs on 0 ≤ n ≤ 3

circles on S2, demonstrating the difficulty of such a task for larger collections. We then

define a graph class Circlek, which contains all region graphs on collections of circles

with maximum degree k ∈ N≥0. We consider the degree of a circle to be its degree within

the corresponding region graph. We end by characterising Circlek for k = 0, 1, 2 and

demonstrate an iterative process for constructing any graph in Circlek from the single

vertex graph.
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Chapter 2

General Möbius transformations

and their characterisations

In this chapter we focus on the d-dimensional sphere Sd ⊂ Rd+1 with the Euclidean

metric. We remind the reader of the extended reals, R̂d := Rd∪{∞} and demonstrate that

they are homeomorphic to Sd via stereographic projection. We introduce the notions of

Möbius transformations, the maps R̂d → R̂d generated by reflections in chordal spheres.

In particular we focus on certain properties and characterisations of these maps which

we make use of in later chapters. The content of this chapter largely follows Chapter 3

of The Geometry of Discrete Groups by Beardon [8], Chapter 3 of An Introduction to

the Theory of Higher-Dimensional Quasiconformal Mappings by Gehring, Martin and

Palka [9] and Inversive Geometry by J.B. Wilker [10].

2.1 Reflections, inversions and chordal spheres

The core building blocks of Möbius transformations in higher dimensions are reflections

in spheres and planes.

Definition 2.1 (Reflections) We denote by Sd−1(a, r) = {y ∈ Rd : |y−a| = r} the sphere
with centre a and radius r. We will denote the unit sphere in Rd dimensions by Sd−1. We

define the closed disc with centre a and radius r as Dd(a, r) = {y ∈ Rd : |y−a| ≤ r}, and
the analogous open disc as the interior of the closed disc. The reflection (or inversion)

in Sd−1(a, r) of a point x ∈ Rd is defined as:

R(x) = a+

(
r

|x− a|

)2

(x− a) (2.1)
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In the special case of Sd−1, R(x) = x/|x|2. We let x∗ = x/|x|2. Ergo, we can reformulate

equation 2.1 as:

R(x) = a+ r2(x− a)∗, (2.2)

where we define R(∞) = a and R(a) = ∞ to define an inversion on the whole of R̂d.

The reflection of a point x ∈ Rd in the plane P (a, t) := {y ∈ Rd : ⟨y, a⟩ = t} where

⟨·, ·⟩ is the standard dot product is defined as:

R(x) = x− 2(⟨x, a⟩ − t)a∗, (2.3)

and we define R(∞) = ∞ to define a reflection on R̂d.

In both cases a quick check shows that R2(x) = x and so R is 1-1 on R̂d, and

that R(x) = x if and only if x ∈ Sd−1(a, r) or x ∈ P (a, t) respectively. Thus both of

these maps satisfy the properties we would expect from a reflection. Geometrically, an

inversion in a sphere can be thought of as mapping a point x ∈ R̂d \ {a} to the point

R(x) lying on the Euclidean ray from a through x satisfying |R(x)− a| · |x− a| = r2. It

interchanges the open disc int(Dd(a, r)) and Rd \Dd(a, r) while preserving Sd−1(a, r). A

reflection in a plane P (a, t) can be thought of as taking a point x ∈ R̂d and mapping it to

the point R(x) such that P (a, t) forms the perpendicular bisector of the line between the

two points. Again, it interchanges the two partitions of Rd. We will refer to reflections

in spheres as inversions, and reserve the term “reflection” for those in planes.

These may seem like fundamentally different operations, however we can unify these

two methods of reflection via chordal spheres.

Definition 2.2 (Chordal spheres) A subset Σ in R̂d is a chordal sphere if it is a Euclidean

sphere in Rd or if Σ = P ∪ {∞} where P is a (d− 1)-dimensional hyperplane.

In general, a chordal sphere Σ can be expressed as:

Σ: a|x|2 − 2⟨b, x⟩+ c = 0, (2.4)

where a, c ∈ R, b ∈ Rd and ac < |b|2. We also require that ∞ is counted as a solution if

and only if a = 0.

One should think of the chordal spheres through ∞ as those infinitely large spheres.

The name “chordal” is certainly suggestive, and we will see why this name is suitable

in §2.2. Let us then denote the reflection in a particular chordal sphere as RΣ. Having

done so, we are now ready to define the Möbius transformations of R̂d.
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Definition 2.3 (Möbius transformations) A Möbius transformation is a finite com-

position of inversions in spheres and reflections in planes. Equivalently, it is a finite

composition of reflections RΣ in chordal spheres.

The composition of two Möbius transformations is again a Möbius transformation.

For ϕ = R1 ◦R2 ◦ · · · ◦Rm, ϕ−1 = Rm ◦Rm−1 ◦ · · · ◦R1. Finally id = R ◦R and so the

identity is a Möbius transformation. This motivates the following:

Definition 2.4 (Möbius Group) The Möbius group Möb(d) is the group of all Möbius

transformations R̂d → R̂d.

We now make a quick comment on the structure of Möb(d).

Remark Let us define O(1, d) as the collection of (d+ 1)× (d+ 1) invertible matrices

that preserve the quadratic form q(x, x) = x20 − (x21 + · · · + x2d), where x ∈ Rd+1. That

is to say, q(x, x) = q(xA, xA) for any A ∈ O(1, d). These matrices form a group under

matrix multiplication, and one may show that the collection of matrices A ∈ O(1, d)

with a00 > 0 forms a subgroup, denoted O+(1, d) - in fact O(1, d) is a special example

of a generalised orthogonal group [11]. We will omit proof of these facts, but proofs

may be found in both [8] and [9]. Indeed, both books proceed to show that Möb(d) is

isomorphic as a topological group to O+(1, d+ 1), proof of which we shall also omit.

We now provide several examples of Möbius transformations.

2.1.1 Examples of Möbius transformations

Firstly, all dilations of R̂d are Möbius. For f = λx, f = R ◦R0 where R0 is the inversion

in Sd−1, and R is the inversion in Sd−1(0,
√
λ).

Secondly, all translations of Rd are Möbius. If we have f(x) = x + a, then we have

f = R1◦R2, where R1 is the reflection in the plane P1 : ⟨a, x⟩ = 0 and R2 is the reflection

in P2 : ⟨a, x⟩ = |a|2/2.
Both of the above can be proven through simple calculations using the definitions of

reflections and inversions.

Thirdly, and less obviously, all orthogonal linear transformations of Rd are Möbius,

which we shall now prove. We denote the orthogonal group of dimension d as O(d).

Lemma 2.1. Any U ∈ O(d) can be represented as a composition of d or fewer reflections

in (d− 1)-planes that pass through the origin.

6



Proof. If U is the identity, then U = R ◦ R for any such reflection, and so we assume

U ̸= I. We now provide an iterative construction for transformations V1, V2, . . . , Vd in

O(d), where each Vi is either the identity I or a reflection as described in the statement

of the lemma. The Vi are constructed so that for k = 1, 2, . . . , d the transformation

Uk = VkVk−1 . . . V1U fixes the vectors e1, e2, . . . , ek. Given this, we may then conclude

that Ud = I and so U = V1V2 . . . Vd, where we recall that V −1
i = Vi. This is exactly a

composition of d or fewer reflections in (d− 1)-planes through the origin.

Let us now describe the construction of such reflections. Let b1 = U(e1) − e1. If

b1 = 0 then take V1 = I otherwise let V1 be the reflection in P1 : ⟨b1, x⟩ = 0. Then in

the second case, U(e1) + e1 ∈ P1 as

⟨b1, U(e1) + e1⟩ = ⟨U(e1)− e1, U(e1) + e1⟩ = |U(e1)|2 − |e1|2 = 1− 1 = 0.

Thus U1 = V1U fixes e1 in both cases; if b1 = 0 then U1(e1) = U(e1) = e1. If instead

b1 ̸= 0, then

U1(e1) = V1(U(e1)) = V1

(
U(e1) + e1 + b1

2

)
=

1

2
V1(U(e1) + e1) +

1

2
V1(b1) =

1

2
(U(e1) + e1)−

1

2
b1 = e1.

Now let us assume k < d and assume we have constructed V1, V2, . . . , Vk such that Uk

fixes e1, e2, . . . , ek. Let us now construct Vk+1 in much the same way we constructed

V1. Let bk+1 = Uk(ek+1) − ek+1 and let Vk+1 = I if bk+1 = 0 otherwise let Vk+1 be the

reflection in Pk+1 : ⟨bk+1, x⟩ = 0. If bk+1 = 0 then it is clear to see that Uk+1 = Vk+1Uk

fixes ek+1 as before and also fixes ei for 1 ≤ i ≤ k as Uk+1 = Uk in this case. If instead

bk+1 ̸= 0 then as Um fixes ei and that

⟨bk+1, ei⟩ = ⟨Uk(ek+1)− ek+1, ei⟩ = ⟨Uk(ek+1), ei⟩ = ⟨Uk(ek+1), Uk(ei)⟩ = ⟨ek+1, ei⟩ = 0,

we see that Vk+1 fixes ei. We can therefore continue until we reach the desired result.

Finally, a similarity is a Möbius transformation that does not involve inversion and

so preserves distances up to scaling. That is, ϕ : Rd → Rd is a similarity if and only if

|ϕ(x)−ϕ(y)| = k|x− y|. In general, a similarity is of the form ϕ = kA+ b, where k ∈ R,
A ∈ O(d) and b ∈ Rd. These include all translations, dilations and linear orthogonal

transformations.

In fact, we can see from these definitions that the group of Möbius transformations
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of Rd will be generated by the similarities and R0, the inversion in Sd−1. In particular,

suppose we have an inversion R in Sd−1(a, r). Then R = R1 ◦ R2 ◦ g ◦ R0 ◦ R2 ◦ R1,

where g(x) = r2x. So any inversion can be expressed as the inversion in the unit sphere

composed with translations and dilations.

2.2 Stereographic Projections

We would like to consider maps from Sd → Sd, while our Möbius transformations are

from R̂d → R̂d. In order to do so we must define a homeomorphism R̂d → Sd. We do

this via a stereographic projection, π. We first embed R̂d in R̂d+1 via x 7→ x̃, the map

such that:

x = (x1, x2, x3, . . . , xd), x̃ = (x1, x2, x3, . . . , xd, 0),

and ∞̃ = ∞. Thus we have a 1-1 map of R̂d to the hyperplane xd+1 = 0 ⊂ R̂d+1. We

can now map this hyperplane onto Sd by projecting x̃ towards ed+1 until it meets Sd in

the unique point π(x̃).

It is now clear that x 7→ π(x̃) is a 1-1 map of R̂d onto Sd. Explicitly:

Definition 2.5 (Stereographic projection) The stereographic projection π : R̂d → Sd is

the map defined by:

π(x̃) =

(
2x1

|x|2 + 1
, . . . ,

2xd
|x|2 + 1

,
|x|2 − 1

|x|2 + 1

)
, (2.5)

and π(∞) = ed+1.

While not immediately apparent, π is in fact a Möbius transformation of R̂d. To

demonstrate this, consider the inversion R4 in Sd(ed+1,
√
2) of R̂d. Then

R4(x̃) = ed+1 +
2(x1, x2, . . . , xd,−1)

1 + |x|2
=

(
2x1

|x|2 + 1
, . . . ,

2xd
|x|2 + 1

,
|x|2 − 1

|x|2 + 1

)
which is exactly Equation 2.5. Thus a stereographic projection is in fact an inversion

- and thus a Möbius transformation - of R̂d+1. In fact, conjugating an inversion or

reflection by a stereographic projection results in an inversion on Sd. This now explains

the name “chordal sphere”; every chord of Sd is sent to a (d− 1)-sphere or (d− 1)-plane

by π. One can then define a stereographic projection from any point on Sd by composing

with a suitable rotation, which is again Möbius.

Now, given a stereographic projection, we can transfer the Euclidean metric on Sd

onto R̂d using the following.
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Definition 2.6 (Chordal metric) The chordal metric is the metric

d(x, y) = |π(x̃)− π(ỹ)| (2.6)

Using Equation 2.5 we can compute an explicit expression for the chordal metric.

From this expression, we may deduce that the chordal metric induces the same topology

when restricted to Rd as the Euclidean metric. Hence, reflections and inversions as in

Definition 2.1 are in fact homeomorphisms R̂d → R̂d under the chordal metric, and so a

Möbius transformation is also such a homeomorphism.

The fact that stereographic projection is induced by an inversion implies that all

invariants under Möbius transformations apply to both R̂d and Sd. Hence we can now

define maps Sd → Sd with the same properties as our Möbius transformations.

Definition 2.7 The group of Möbius transformations of the d-sphere, denoted Möb(Sd)
is the group of maps π ◦ Möb(d) ◦ π−1, recalling that stereographic projections are in

fact Möbius.

2.3 Properties of Möbius transformations

Having established the equivalence of Möbius transformations on R̂d and Sd, we now

proceed to investigate their properties.

Definition 2.8 (Cross-ratio) Given four distinct points x, y, u, v ∈ R̂d, the cross-ratio

of these points is

[x, y, u, v] =
|x− u||y − v|
|x− y||u− v|

, (2.7)

where | · | is the Euclidean distance between points. If one of these points is ∞:
[∞, y, u, v] =

|y − v|
|u− v|

, [x,∞, u, v] =
|x− u|
|u− v|

,

[x, y,∞, v] =
|y − v|
|x− y|

, [x, y, u,∞] =
|x− u|
|x− y|

.

(2.8)

The cross-ratio is the fundamental invariant under Möbius transformation.

Lemma 2.2. A map f : R̂d → R̂d is a Möbius transformation if and only if it preserves

cross-ratios.

Proof. For the forward direction, observe that reflections and inversions as defined earlier

preserve cross-ratio. Hence all Möbius transformations do so as the composition of

reflections and inversions.
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For the backwards implication, note that if we have a map ϕ that preserves cross-ratio

but does not fix ∞, then we may compose it with an inversion such that the resulting

map does fix ∞. Let ϕ be a map that preserves cross-ratio and has ∞ as a fixed point.

Let x1, x2, x, y ∈ Rd be distinct points. Then

|x− x2|
|x2 − x1|

=
|x− x2||x1 −∞|
|x2 − x1||x−∞|

=
|ϕ(x)− ϕ(x2)||ϕ(x1)−∞|
|ϕ(x2)− ϕ(x1)||ϕ(x)−∞|

=
|ϕ(x)− ϕ(x2)|
|ϕ(x2)− ϕ(x1)|

where we use the fact that ϕ preserves cross-ratio and fixes ∞ and Equalities 2.8. By

similar logic, we obtain that

|x− y|
|x− x2|

=
|ϕ(x)− ϕ(y)|
|ϕ(x)− ϕ(x2)|

.

Now, by multiplying these equal ratios,

|x− y|
|x2 − x1|

=
|ϕ(x)− ϕ(y)|
|ϕ(x2)− ϕ(x1)|

=⇒ |ϕ(x)− ϕ(y)| = |ϕ(x2)− ϕ(x1)|
|x2 − x1|

|x− y|.

If we consider x1, x2 to be fixed, then this implies that ϕ is a similarity with scale factor

k = |ϕ(x2)− ϕ(x1)|(|x2 − x1|)−1 as in §2.1.1.

The proof of this result also provides the following corollary.

Corollary 2.1. If ϕ ∈ Möb(d) and ϕ(∞) = ∞ then ϕ is a similarity.

Proof. The result follows immediately from the proof of Lemma 2.2.

In fact, this provides the following result for Möbius transformations of Sd.

Corollary 2.2. If ϕ ∈ Möb(Sd) has a fixed point, then ϕ is a similarity.

Proof. If ϕ(x0) = x0, then choose a stereographic projection sending x0 to ∞. Then ϕ

fixes ∞ as an element of Möb(d) and so is a similarity by Corollary 2.1.

Having investigated similarities and the cross ratio, let us briefly mention closed

forms. We may express any Möbius transformation of R̂d as

ϕ(x) = b+
αA(x− a)

|x− a|ϵ
, (2.9)

where a, b ∈ Rd, α ∈ R, A ∈ O(d) and ϵ ∈ {0, 2}. Note that ϵ = 0 gives us the

similarities, and ϵ = 2 gives us those transformations involving inversion.
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Also note that Sd is orientable, and so we may classify every Möbius transformation

as either orientation preserving or reversing. A single inversion or reflection is orientation

reversing. A composition of an odd number of reflections/inversions is also orientation

reversing while an even number of reflections/inversions is orientation preserving. The

orientation preserving transformations form a subgroup, Möb+(d) < Möb(d).

In the special case d = 2 any Möbius transformation can be expressed in its nor-

malised form as

ϕ(z) =
Az +B

Cz +D
(2.10)

if ϕ is orientation preserving, or

ϕ(z) =
Az̄ +B

Cz̄ +D
(2.11)

if ϕ is orientation reversing, where we use complex notation. Here z ∈ R2 = C and

A,B,C,D ∈ C with AD − BC = 1. Möbius transformations of Ĉ are usually taken to

be those that preserve orientation, Möb+(2), as those that reverse orientation are not

analytic.

In fact, for the general case of R̂d, any Möbius transformation can be expressed as

(ax + b)(cx + d)−1 where x ∈ R and a, b, c, d are in a Clifford algebra and satisfy some

specific constraints. This serves to demonstrate the form in Equation 2.10 is merely a

special case. We will not go into more detail on this, but direct the reader to several

sources on Clifford algebras and their applications to Möbius transformations [12][13].

We now return to demonstrating results for use in later chapters. It is well known that

for d = 2, a Möbius transformation is determined by its action on three distinct points.

We provide a proof of this before introducing a similar result for higher dimensions.

Lemma 2.3. For two triples (z1, z2, z3) and (z′1, z
′
2, z

′
3), there is a unique Möbius trans-

formation ϕ : Ĉ → Ĉ such that ϕ(z1, z2, z3) = (z′1, z
′
2, z

′
3).

Proof. Suppose we have two Möbius transformations ϕ(z1, z2, z3) = (z′1, z
′
2, z

′
3) and

ϕ′(z1, z2, z3) = (z′1, z
′
2, z

′
3). Take a third Möbius transformation ψ(z′1, z

′
2, z

′
3) = (0, 1,∞).

To justify the existence of ψ, take

ψ1(z) =
1

z − z3
, ψ2(z) = z − ψ1(z1), ψ3(z) =

z

ψ1(z2)− ψ1(z1)

then a quick check confirms that ψ = ψ3 ◦ ψ2 ◦ ψ1 is such a map.

We may then define σ = ψ ◦ ϕ and σ′ = ψ ◦ ϕ′. Thus σ−1 ◦ σ′ maps (0, 1,∞) to
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(0, 1,∞). We show that this implies σ ◦ σ′ = id. Express σ ◦ σ′ = (Az + B)/(Cz +D)

as in Equation 2.10. Firstly, σ ◦ σ′(0) = 0 implies B = 0. Now σ ◦ σ′(∞) = ∞ implies

C = 0. Thus σ ◦σ′ = (A/D)z. But σ ◦σ′(1) = 1 implies A = D. Because AD−BC = 1,

A = D ∈ {1,−1}. In both cases σ ◦σ′(z) = z and so we obtain the identity. But σ−1 ◦σ
is also the identity by similar logic, and thus σ = σ′ =⇒ ψ ◦ϕ = ψ ◦ϕ′ =⇒ ϕ = ϕ′.

The same is also clearly true of orientation reversing Möbius transformations of Ĉ
by a very similar method of proof. Having demonstrated the 3-transitivity of Möbius

transformations of Ĉ, the next lemma gives us a generalisation of this result.

Lemma 2.4. Given two subsets S = {xi}, S′ = {x′i}, i ∈ I, lying in R̂d, there is a

Möbius transformation ϕ with ϕ(S) = S′ if and only if every cross ratio [xi, xj , xk, xl] =

[x′i, x
′
j , x

′
k, x

′
l] for i, j, k, l ∈ I. Given that ϕ exists, it is unique if and only if S contains

d+ 2 points not all on the same chordal sphere.

Proof. We follow the proof structure of Wilker in [10], fleshing out details he omits. We

begin by proving existence.

For the forward implication, we have already seen that Möbius transformations pre-

serve cross ratio by Lemma 2.2 and thus cross-ratios match in S and S′.

For the backwards direction, we begin by inverting x1 and x′1 to ∞. Call these

inversions ι and ι′. Then S becomes T = {yi} and S′ goes to T ′ = {y′i}. Clearly ι and

ι′ are Möbius and so

[xi, xj , xk, xl] = [yi, yj , yk, yl]

and

[x′i, x
′
j , x

′
k, x

′
l] = [y′i, y

′
j , y

′
k, y

′
l],

for i, j, k, l ∈ I. Now suppose there is ψ with ψ(T ) = T ′. Then ψ(∞) = ∞, and so by the

Corollary 2.1, ψ is a similarity. Observe that ϕ := ι′−1 ◦ψ ◦ ι is a Möbius transformation

with ϕ(S) = S′. As a result, ϕ exists if and only if ψ exists. We show the existence of

ψ. By assumption, we have

[xi, xj , xk, xl] = [x′i, x
′
j , x

′
k, x

′
l]

which implies

[yi, yj , yk, yl] = [y′i, y
′
j , y

′
k, y

′
l],

and so |y′i − y′j | = k|yi − yj | holds for all i, j ∈ I by rearranging the cross ratio. This

demonstrates such a similarity ψ exists, and so such a ϕ exists. This concludes our proof

12



of existence.

We now proceed to prove the condition on uniqueness. To do so, we show that the

following are equivalent:

(i) ϕ is unique.

(ii) ψ is unique.

(iii) T contains a d-simplex (A collection of d+1 points that do not all lie on a (d− 1)-

plane).

(iv) S contains d+ 2 points not on the same chordal sphere.

(i) =⇒ (iv): Suppose S did lie entirely on a chordal sphere. Then we can find

multiple ϕ which preserve S but differ elsewhere, for example the rotations about the

chordal sphere containing S. Thus assuming a unique ϕ exists means (iv) holds.

(iv) =⇒ (iii): If S contains d + 2 points not all on the same chordal sphere, then

under ι, all d+ 2 points again do not lie on a single chordal sphere. Take d+ 1 of these

points in T , which define a unique chordal sphere, which may be a (d − 1)-plane. The

remaining point then does not lie on this chordal sphere, and so we may easily form a

d-simplex.

(iii) =⇒ (ii): If T contains a d-simplex, then so does T ′. Call the simplices σ and

σ′, and note that ψ(σ) = σ′ must hold. Suppose there exists a similarity ψ1 ̸= ψ with

the same property, which implies ψ−1
1 (ψ(σ)) = σ. But then ψ−1

1 ◦ψ is a similarity fixing

a d-simplex, and so is an isometry fixing a d-simplex, and is thus the identity. This

demonstrates that ψ must therefore be unique.

(ii) =⇒ (i): If ψ = ι′ ◦ ϕ ◦ ι−1 is unique, then ϕ = ι′−1 ◦ ψ ◦ ι is unique.
Thus we have shown (i) holds if and only if (iv) holds, and so the required uniqueness

condition.

Note that the conditions of Lemma 2.4 are vacuously true if S and S′ are triples, and

so Möb(d) is always at least sharply 3-transitive. Furthermore, the lemma tells us that

a Möbius transformation is determined by its action on at most d+ 2 points in general.

This means we only ever have to check a finite number of points to entirely determine

the map.
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2.4 Characterising Möbius transformations by chordal sphere

preservation

We now proceed to show a crucial characterisation of Möbius transformations via their

preservation of chordal spheres.

Lemma 2.5. If d ≥ 2 and f : R̂d → R̂d is a bijective function with the property that

f(Σ) is a chordal sphere for every chordal sphere Σ, then f is a Möbius transformation

of R̂d.

Proof. Let us first recall Lemma 2.4, which demonstrated that the group of Möbius

transformations is certainly sharply 3-transitive on R̂d. Given this, we may compose f

with a Möbius transformation, and thereby assume that f fixes 0, ∞ and a point x on

Sd−1. As f is assumed to be chordal sphere preserving, we see in particular that f is

(d−1)-plane preserving. We may use this fact and an induction to show that f preserves

lines. Then by the fundamental theorem of affine geometry, f is an affine transformation,

and is in fact linear as it fixes 0.

Consider a (d − 2)-sphere centred on 0 and passing through x. Then as f is linear,

it must preserve all such spheres. The union of all such spheres is exactly Sd−1, and so

f fixes the unit sphere. But the only linear transformations that fix the unit sphere are

the orthogonal transformations, which we earlier demonstrated are themselves Möbius.

Thus the proof is complete.

Let us now make a short remark concerning the history of this lemma. It has been an

objective to weaken the requirements on f in Lemma 2.5 for many years. Problems of this

sort belong to the geometrical discipline referred to as “characterisations of geometrical

mappings under mild hypotheses” [14]. There are many papers on problems in the

discipline within the literature.

It may already be surprising that we need not assume f is continuous, yet it turns

out that neither surjectivity nor injectivity are required. In fact Li and Yao showed in

[15] that the following assumptions are sufficient:

(i) f preserves r-dimensional chordal spheres for some 1 ≤ r ≤ d.

(ii) f is non-degenerate, that is to say, f(R̂d) is not an r-dimensional chordal sphere.

then given (i), f is a Möbius transformation of R̂d if and only if it satisfies (ii).

All that remains to complete the characterisation is to show that Möbius transfor-

mations preserve chordal spheres.
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Lemma 2.6. If ϕ is a Möbius transformation, then it preserves chordal spheres.

Proof. It is apparent that similarities preserve chordal spheres; they preserve distance up

to scaling. As Möb(d) is generated by the similarities and R0, we only have to check that

R0 preserves chordal spheres. Take a chordal sphere Σ with equation a|x|2+2⟨b, x⟩+c =
0. Then for x ̸= 0,∞, y = R0(x) = x/|x|2 satisfies

c|y|2 + 2⟨b, y⟩+ a =
c

|x|2
+ 2

〈
b,

x

|x|2

〉
+ a =

c− 2⟨b, x⟩+ a|x|2

|x|2
.

Hence x lies on Σ if and only if y lies on Σ′ : c|y|2 + 2⟨b, y⟩+ a = 0. We then see that 0

lies on Σ if and only if R0(∞) lies on Σ′, and vice versa. Thus R0(Σ) = Σ′.

Combining Lemmas 2.5 and 2.6, we see that chordal sphere preservation characterises

the Möbius transformations. We see then that maps in Möb(Sd) are characterised by

their preservation of chords of Sd.
Finally, we provide a quick result on how the Möbius group of the sphere acts on

chordal spheres.

Lemma 2.7. The action of Möb(d) on the set of chordal spheres of R̂d is sharply tran-

sitive. That is, for Σ and Σ′ chordal spheres, there is a unique Möbius transformation

ϕ such that ϕ(Σ) = Σ′.

Proof. Let S be a set of d+1 distinct points, and S′ another set of d+1 distinct points in

R̂d. Then S defines a unique chordal sphere Σ and similarly S′ defines a unique chordal

sphere Σ′. Then as S does not contain d + 2 points on a single chordal sphere, there

is a unique Möbius transformation ϕ such that ϕ(S) = S′ by Lemma 2.4. This implies

ϕ(Σ) = Σ′ as claimed.

As stated earlier, results proved in the previous two sections also apply to Möb(Sd)
and chords of Sd. We will make use of this in the next chapter.
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Chapter 3

Extending results of A.

Georgakopoulos

In [1], A. Georgakopoulos has proved certain results on sphere graphs and the d-sphere.

In particular, he has proven that there is an isomorphism between Aut(Sd) and Aut(Cd)

for d = 1, where Aut(Sd) is the group of homeomorphisms from Sd to Sd. We aim to

prove the following generalisation for d ≥ 2 in order to answer Question 1:

Theorem (Theorem 3.2) The map π from Möb(Sd) to Aut(Cd) is an isomorphism for

d ≥ 2.

Where π(g) is the graph automorphism canonically induced by a homeomorphism g

of Sd, that is, for a chord C, π(g)(C) = g(C). Also note that each Möbius transformation

h induces a graph automorphism π(h) canonically.

3.1 Graph Notation

A large portion of the remaining chapters will concern graph theory, and so we introduce

the relevant terminology.

A graph X consists of V (X), its vertex set and E(X) the edge set. An edge consists

of an unordered pair xy where x, y ∈ V (X). We then say x is adjacent to y, and

write x ∼ y. We consider only simple graphs; those graphs where no edge has identical

end-vertices and no two vertices may be connected by multiple edges. We consider two

graphs X,Y isomorphic if there is a bijection ϕ from V (X) to V (Y ) such that x ∼ y

if and only if ϕ(x) ∼ ϕ(y). A graph isomorphism X → X is a graph automorphism, a

permutation of the vertices that maps edges to edges, and non-edges to non-edges. For
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S ⊆ V (G), the subgraph G[S] of G induced by S has vertex set S and edge set consisting

of all edges in E(G) with both end-vertices in S.

We assume knowledge of the most basic terminology in graph theory and will en-

deavour to explain any less well-known notions that we use in later sections. There

are many texts the reader may refer to for further reading; Algebraic Graph Theory by

Godsil and Royle [16] is perhaps the closest in spirit to the focus of this dissertation.

3.2 Preliminary definitions and results

In order to tackle this problem, we must introduce some key definitions and results.

Definitions 3.1, 3.3, 3.4 and 3.5 are analogous to definitions in [1]. Recall our definitions

of Sd and Dd from Chapter 2 and that Sd = ∂Dd+1.

Definition 3.1 (Hyperchord) A hyperchord of Sd is the non-empty intersection of a

d-dimensional, non-tangential hyperplane with Dd+1. We refer to hyperchords as chords

for the remainder of this dissertation.

Definition 3.2 (Sheaf of Planes) A sheaf of d-dimensional hyperplanes is the collection

of all hyperplanes that contain V where V is a (d− 1)-dimensional subspace of Rd+1.

Definition 3.3 (Incident Chords) We refer to two chords P , Q as incident if P ∩ Q

is a singleton. We often say “incident at x” when referring to a collection of pairwise

incident chords whose intersection is x.

Definition 3.4 (Sphere Graph) The sphere graph Cd is the graph whose vertices are

the chords of Sd. Two chords form an edge whenever they intersect in Dd+1.

Definition 3.5 (Boundary Clique) We let a boundary clique be the set of all chords

containing x ∈ Sd. This clearly induces a clique Kx in Cd. Furthermore, Kx ̸= Ky for

x ̸= y.

Definition 3.6 (Incident Clique) We let an incident clique be a maximal set of pairwise

incident chords at x ∈ Sd. This also induces a clique Ix in Cd, as all such chords contain

the point x and so are adjacent in the sphere graph. We may see that Ix ⊂ Kx certainly

holds.

It is important to stress that these cliques are subsets of the vertex set of Cd, and

so we can view them as induced subgraphs. It is also simple to view them as subsets

of Dd+1, and in fact we will often go back and forth between the sphere graph and the

d-sphere to construct proofs.
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Furthermore, a notable difference between d = 1 and d ≥ 2 arises here. All boundary

cliques are also incident cliques for d = 1 however, this is not the case for higher dimen-

sions. In fact we will shortly see that a boundary clique is just a union of incident cliques.

We now introduce spherical caps to construct our proof; their use ensures we also cover

the case d = 1, allowing us to provide an alternative method of proof for the original

result of Georgakopoulos. It is possible to instead use the unique embedded circle that

is the intersection of a given chord with Sd, and to prove analogous results. Such an

avenue is perhaps slightly more in line with the material of later chapters, but does not

cover all dimensions.

Definition 3.7 (Spherical caps) A chord P partitions Sd into two distinct regions. A

spherical cap CP is the union of P with exactly one of the aforementioned partitions.

Each cap clearly uniquely defines a corresponding chord. For d = 1 a cap is a circular

segment. Note that a given chord defines two spherical caps, giving us choice.

Having introduced the foundations, we now begin proving lemmas that will allow us

to extend Georgakopoulos’ results on sphere graphs.

Lemma 3.1. If P and Q are a pair of intersecting chords of Sd, then they partition Sd

into four disjoint sets. Namely the following:

• A = {x ∈ Sd|x /∈ CP , x /∈ CQ}

• B = {x ∈ Sd|x /∈ CP , x ∈ CQ}

• C = {x ∈ Sd|x ∈ CP , x /∈ CQ}

• D = {x ∈ Sd|x ∈ CP , x ∈ CQ}

If P and Q are incident, then either |D| = 1 or one of A, B or C is empty.

Proof. As our planes are distinct, intersecting d-dimensional subspaces inside a (d+ 1)-

dimensional space, they must partition the d-sphere into four regions. We now analyse

the four possible cases when P and Q are incident, see Figure 3.1.

In Case 1, |D| = 1 as D contains only the incident point, and A, B, C are all

non-empty. In Case 2, B = ∅. In Case 3, C = ∅. In Case 4, A = ∅.

The above proof demonstrates that a pair of incident chords partition the d-sphere

into three.
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P

Q

(a) Case 1

P

Q

(b) Case 2

P

Q

(c) Case 3

P

Q

(d) Case 4

CP CQ

Figure 3.1: The four possible choices of caps for an incident pair.

Several of the following lemmas will rely on basic knowledge of vector spaces and

smooth manifolds. There are many texts dealing with such material, but we would refer

the reader to An Introduction to Smooth Manifolds by J. M. Lee for further reading on

the topic of smooth manifolds. Given this, we now analyse the structure of incident

cliques.

Lemma 3.2. A collection of chords {Pi}i∈I with x ∈ Pi, ∀i ∈ I is an incident clique if

and only if it is the intersection of a sheaf containing V ⊂ TxSd, excluding the tangent

hyperplane, with Dd+1, where dim(V ) = d− 1.

Proof. For each chord P , recall that P = HP ∩ Dd+1 where HP is a hyperplane.

For the forward direction, suppose we have an initial chord P ∋ x, with its associated

hyperplane HP . We may then define T := TxSd, the tangent space at x, which is d-

dimensional. We also define ℓP = HP ∩ T . Now suppose we pick a chord Q incident to

P at x. This necessarily implies HP ∩ HQ ∩ Sd = {x}. Thus HP ∩ HQ ⊂ T . We also

define ℓQ = HQ ∩ T . Thus

ℓP ∩ ℓQ = (HP ∩ T ) ∩ (HQ ∩ T ) = HP ∩HQ ∩ T = HP ∩HQ. (3.1)

Analysing dimensions, dim(HP ∩ HQ) = d − 1 as the intersection of two distinct d-

dimensional spaces. Thus dim(ℓP ∩ ℓQ) = d− 1. But ℓp and ℓq are (d− 1)-dimensional

spaces themselves, and thus ℓP = ℓQ. Hence all chords incident to P at x must lie in the

sheaf around ℓP ⊂ TxSd, and thus the incident clique containing P must be the sheaf

around ℓP minus T , as it is tangent to Sd.
To show the reverse implication, suppose we have a sheaf S around V ⊂ TxSd minus

TxSd. Then for Hi, Hj ∈ S,

{x} = Hi ∩Hj ∩ Sd = (Hi ∩ Sd) ∩ (Hj ∩ Sd) = Pi ∩ Pj (3.2)
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and so pairwise incidence is satisfied. Maximality is also satisfied, any plane not in S

cannot be pairwise incident to all members of S.

We now show that incident cliques are the fundamental building blocks of boundary

cliques, which form the basis of our proof structure.

Lemma 3.3. Each boundary clique Kx is the disjoint union of the incident cliques at

x.

Proof. Firstly, given a chord P that contains x, it is clearly the intersection of a hyper-

plane, say HP , contained in a sheaf around a tangent to x with Dd. Thus P is in some

incident clique Ix. This must be a unique incident clique, otherwise HP would contain

two (d− 1)-dimensional tangents to Sd. Thus every chord in Kx is contained in a single

incident clique, and so the disjoint union of incident cliques at x must be Kx.

Intuitively, a chord containing a fixed point x can be determined by two parameters:

1. Its “angle” (i.e. orientation within a fixed sheaf)

2. Its “rotation” (i.e. the direction of the tangent at x)

An incident clique at x is the collection of chords with a fixed rotation containing x.

In particular, this tells us that there are infinitely many disjoint incident cliques at a

point x. A boundary clique is the collection of chords containing x with any angle and

rotation, and so it is the union of incident cliques at x.

Having determined the structure of incident and boundary cliques, we introduce two

useful invariants under automorphisms of intersection graphs of curves.

3.3 Region counting

We will often refer to a region counting argument throughout this dissertation. Given

an intersection graph Z of some class of curves embedded in Sd we may take the induced

subgraph of Z consisting of all vertices not adjacent to a given collection of curves.

Removing such curves corresponds to removing the closed neighbourhood of every curve

in the collection. Recall that the closed neighbourhood of a vertex, v, in a graph is the

set of vertices adjacent to v as well as v itself. We denote such a neighbourhood N(v).

In this chapter, Z = Cd - as mentioned earlier every chord defines a unique embedded

circle in Sd; in later chapters we will consider more general classes of curves.
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Given a collection of curves, say {Ci} := {Ci}i∈I ⊂ V (Z), we define:

Reg({Ci}) = # of connected components of ISG on V (Z)\

(⋃
i∈I

N(Ci)

)
, (3.3)

the region function, where “ISG” stands for “induced subgraph”. The vertices not

adjacent to any Ci are exactly those that do not intersect any Ci, and are not in the

collection themselves. Then the region function gives us a direct correspondence between

the graph and the geometry of the sphere. The connected components of this induced

subgraph correspond to the topological components of Sd\{Ci}. It is clear that a graph

automorphism h ∈ Aut(Z) must preserve the number of connected components, and so

the region function satisfies:

• Reg({Ci}) = Reg(h({Ci}))

• Reg(H) = Reg(h(H))

where H ⊂ {Ci}. This fact will prove crucial in understanding the behaviour of graph

automorphisms on various classes of curves.

In general, if we claim that a collection of curves gives us n regions, we are implicitly

using the region function.

3.4 Region graphs

In addition to our region function, we may define a region graph, R{Ci} on a set of curves

in Sd. Each vertex corresponds to a unique connected component in the aforementioned

induced subgraph on

V (Z)\

(⋃
i∈I

N(Ci)

)
(3.4)

For two connected components X,Y , we have an edge X ∼ Y if and only if there is

a j ∈ I with X,Y induced subgraphs of Z, where Z is a connected component in the

induced subgraph on

V (Z)\

 ⋃
i ̸=j∈I

N(Ci)

 (3.5)
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That is to say, there is a curve, which when removed from our picture, results in the

two regions becoming one. In subsequent chapters we consider more general curves on

S2, but in these cases region graphs may be defined for higher dimensions equally well.

We now prove that region graphs are indeed an invariant under any h ∈ Aut(Z).

Lemma 3.4. A region graph R{Ci} is preserved under h ∈ Aut(Z). That is, R{Ci}
∼=

Rh({Ci}), where h({Ci}) = {h(Ci)|i ∈ I}.

Proof. Assume we are given {Ci}i∈I and the corresponding region graph. We show

X ∼ Y if and only if h(X) ∼ h(Y ) where X and Y are vertices of the region graph.

For the forward implication, suppose X ∼ Y . Then X,Y are induced subgraphs of

Z a connected component in the induced subgraph on Expression 3.5. Then h(Z) is a

connected component of the induced subgraph on

V (h(Z))\

 ⋃
i ̸=j∈I

N(h(Ci))

 (3.6)

for some j ∈ I. If not, then we contradict that h preserves adjacency. In particular,

the number of connected components must be preserved by h. Furthermore, h(X) and

h(Y ) must be induced subgraphs of h(Z). Now consider the induced subgraph on

V (h(Z))\

(⋃
i∈I

N(h(Ci))

)
(3.7)

Clearly, h(X) and h(Y ) must be distinct connected components of this induced sub-

graph, otherwise we again contradict that h preserves adjacency. This implies that

removing h(Cj) from the collection unites h(X) and h(Y ) into a single connected com-

ponent. This in turn implies that h(X) ∼ h(Y ).

It only remains to show that h(X) and h(Y ) are indeed vertices of R{h(Ci)}. We must

show the diagram in Figure 3.2 commutes.

{Ci} h({Ci}))

components h(components)

h

Region Region

h

Figure 3.2: Commutative diagram

We let Region: P(V (Z)) → N be a function that takes a collection of curves {Ci},
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a subset of the vertex set of some intersection graph of curves, Z, and gives us the

connected components of the resulting induced subgraph on Expression 3.4. Note that

Reg(C) = |Region(C)|. Clearly, N(Ci) ∼= N(h(Ci)) for all i ∈ I. Thus
⋃

i∈I N(Ci) ∼=⋃
i∈I N(h(Ci)) and hence Expression 3.4 is isomorphic to Expression 3.7 as a graph.

Hence the connected components of each are isomorphic, and so h(X) and h(Y ) are

vertices of R{h(Ci)} as expected.

The backwards direction follows by exactly the same arguments and thus the region

graph is preserved by any h ∈ Aut(Z).

We will see that region count and region graphs are useful tools in answering Question

1.

3.5 Constructing a well-defined map of the d-sphere via

boundary cliques

The aim of this section is to show that boundary cliques are mapped bijectively under

the action of a given graph automorphism of Cd, and so provide a well-defined map of

the d-sphere. We begin by recalling Lemma 3.1 from [1], which forms the basis of this

section.

Lemma 3.5 (Lemma 3.1). Every h ∈ Aut(Cd) maps each boundary clique onto a bound-

ary clique for d = 1.

We aim to extend this result to d ≥ 2. To do this, we first prove results on incident

cliques and then combine these to obtain a result for boundary cliques.

Lemma 3.6. Every h ∈ Aut(Cd) maps an incident pair onto an incident pair.

Proof. Let P , Q be an incident pair of chords which are sent to a non-incident pair of

chords, h(P ), h(Q) by our automorphism h. There are two scenarios to consider in the

image. Either h(P ) and h(Q) do not intersect or they intersect but are not incident.

The first is impossible as h is an automorphism of Cd and so preserves adjacency. Thus

we may assume that h(P ) and h(Q) intersect non-incidentally. Ergo, they divide the

sphere into four disjoint sets by Lemma 3.1.

We now use a region counting argument, explicitly stating all steps to make the

process clear. Consider the collection of all chords R ∈ V (Cd) which are not adjacent

to P or Q. This is the collection of all chords in of Sd which are disjoint to both P

and Q. Let us call the collection of all such chords R. Considering R as an induced
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subgraph of Cd, we show that it is composed of three connected components. Firstly,

only three topological components as demonstrated in Figure 3.1(a) may contain chords,

and so R must have exactly three connected components. To show connectedness of each

component, let us consider non-adjacent chords M , N in a particular partition. We can

always choose CM and CN so that they do not intersect P or Q. By the connectedness of

Sd, there is a shortest path connecting CM to CN which lies entirely within the selected

topological component. We may then specify a sequence of caps not intersecting P or

Q - giving us chords - but intersecting the previous cap in the sequence. Thus there

is a path from M to N in our component of Cd and so each component of R is indeed

connected. Hence under h each of these components remains connected, as edges are

preserved. However, each component must be mapped by h to a single partition of Sd

in the image, as we cannot split or add h(P ) or h(Q) to a component. But we have only

three components of R, and four partitions in the image, so we have a partition with

no component mapped to it. But this provides a contradiction. There is clearly a chord

in this partition which intersects neither h(P ) nor h(Q) and hence must be the image

of some element of R. But it is not adjacent to any of the images of components of R,

which has no isolated vertices. Thus h cannot map P and Q to a pair of non incident

chords.

In future proofs we will omit the explicit construction of a contradiction if an auto-

morphism fails to preserve region count. We now demonstrate that incident cliques are

preserved by automorphisms of Cd.

Lemma 3.7. Every h ∈ Aut(Cd) maps an incident clique onto an incident clique.

Proof. For an n-tuple of incident chords, Sd is partitioned into n+1 sets, as a consequence

of Lemma 3.2. If our tuple is not mapped to another n-tuple of incident chords, then

there are two cases to consider. Either we have at least one pair of chords in the image

that are disjoint, or we have a pair that intersect but are not incident. In the first case,

we contradict that h preserves adjacency. In the second, the image chords will partition

Sd into at least n + 2 regions which contradicts that h preserves region count. Hence

incident n-tuples are preserved.

Thus incident cliques are sent to incident cliques as all finite subsets of an incident

clique are also preserved. Explicitly, h(Ix) ⊆ Iy for some y ∈ Sd and Ix, Iy incident

cliques at x and y. If h(Ix) is a proper subset of Iy, then h−1(Iy) intersects Ix but

does not contain it. This then contradicts that h−1 preserves incident chords. Thus

h(Ix) = Iy
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Now we may show that distinct incident cliques at a point are preserved injectively.

Lemma 3.8. Let I1x ̸= I2x be distinct incident cliques at x ∈ Sd. Then ∀h ∈ Aut(Cd),

h(I1x) = I1y and h(I2x) = I2y with I1y ̸= I2y .

Proof. Observe that I1x∪I2x forms a clique in Cd, as all of these chords contain x. Suppose

now that h(I1x) = Iy and h(I
2
x) = Iz with y ̸= z, by Lemma 3.7. Then we may find P ∈ Iy

and Q ∈ Iz with P ∩Q = ∅. Specifically, as y ̸= z, there is a diameter between the two,

so that they are in distinct hemispheres. We can then pick P and Q so that they are

contained solely in one hemisphere. As h−1(P ), h−1(Q) ∈ I1x ∪ I2x this contradicts that

h preserves edges, and thus y = z. We call these I1y and I2y .

Now suppose I1y = I2y . Take a chord P ∈ I1x/I
2
x. Then h(P ) ∈ I1y = I2y . Thus h

−1(h(P )) ∈
I2x, a contradiction. Thus I1y ̸= I2y , and distinct incident cliques at a point are mapped

to distinct incident cliques at a point.

We can also show that distinct incident cliques at different points are mapped injec-

tively by graph automorphisms.

Lemma 3.9. Let Ix and Iy be incident cliques at distinct points. Then h(Ix) and h(Iy)

are also incident cliques at distinct points, for h ∈ Aut(Cd).

Proof. We may find a chord P ∈ Ix and a chord Q ∈ Iy such that P ∩Q = ∅. If h(Ix) =

h(Iy) then h(P ) ∩ h(Q) ̸= ∅, contradicting that h preserves adjacency. Thus incident

cliques at different points are also mapped injectively by graph automorphisms.

We finally show that graph automorphisms map incident cliques surjectively.

Lemma 3.10. For an incident clique Iy, there exists Ix such that h(Ix) = Iy. That is,

h ∈ Aut(Cd) is surjective on incident cliques.

Proof. We know from Lemma 3.7 that h−1(Iy) is an incident clique Ix satisfying the

statement of the lemma. Clearly this incident clique must be unique, otherwise we

contradict Lemma 3.9 when applied to h−1.

Thus we see that any automorphism of Cd is bijective in its action on incident cliques

at a point, by combining Lemmas 3.8 and 3.10. Furthermore, automorphisms of Cd

act bijectively on incident cliques at distinct points, as a consequence of Lemmas 3.9

and 3.10. Given that incident cliques form the building blocks of boundary cliques, we

suspect that a similar result should hold for boundary cliques. We now prove so.
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Lemma 3.11. For a boundary clique Kx, h(Kx) = Ky for all h ∈ Aut(Cd) and for

some unique y ∈ Sd. That is, boundary cliques are sent to boundary cliques by graph

automorphisms.

Proof. By Lemma 3.3, a boundary clique Kx is simply the union of all incident cliques

at x. So for Ix ⊂ Kx we know that h(Ix) = Iy ⊂ Ky for a unique y ∈ Sd by Lemma 3.9.

Thus

h(Kx) =
⋃

Ix⊂Kx

h(Ix) =
⋃

Iy⊂Ky

Iy = Ky (3.8)

by the bijectivity of h, and where we take the union to be the induced subgraph on the

union of the vertex sets. By the same logic h−1(Ky) = Kx. Thus a boundary clique is

mapped to a unique boundary clique.

Lemma 3.12. Boundary cliques are mapped bijectively under automorphisms of Cd.

Proof. For injectivity, take two distinct boundary cliques Kx,Ky. Suppose h(Kx) =

h(Ky) = Kz, but then we may find a small chord P in Kx and a small chord Q in Ky

such that P ∩ Q = ∅. But then h(P ) ∩ h(Q) ̸= ∅ as both contain z. Hence we have

a contradiction, and so h maps boundary cliques injectively. For surjectivity, take a

boundary clique Ky and a graph automorphism h. Then by Lemma 3.11, h−1(Kx) is a

boundary clique.

Note that we do not have to consider distinct boundary cliques at a point x, as there

is a unique such clique for a given point.

At this stage, one might question whether incident and boundary cliques are nec-

essary to construct a bijective map of Sd. We address this concern in the following

section.

3.6 Motivating incident cliques

The motivation behind defining incident cliques and boundary cliques is that they tell us

exactly how a point in Sd is mapped under our graph automorphism, and thus allow us

to define a homeomorphism of the sphere in §3.7. In fact, we do not strictly need infinite

collections; representing a point x by an incident pair would suffice. As in Theorem

3.2, we pick a pair incident at x, and map x to y, where their image under a graph

automorphism is incident at y. One concern around finite arrangements is demonstrated

in the following example, in S3, where chords are circles.
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Example 1 We consider a collection of four pairwise incident chords, P1, P2, P3, P4, of

S3 in the the arrangement demonstrated in Figure 3.3. It is clear that pairwise incidence

is satisfied, but there is not a single point of incidence. In general such a configuration

is possible for up to d+2 pairwise incident chords of Sd; a pyramid with an extra chord

in the middle. In these cases, a region counting argument does not distinguish this

arrangement from an arrangement that defines a single point of incidence, except for

d = 2. This is because such an arrangement divides the sphere up into d + 1 regions,

the same as for a sheaf arrangement of pairwise incident chords. However, an argument

via region graphs does demonstrate a sheaf arrangement cannot be split into a pyramid

by any h ∈ Aut(Cd). Namely, the region graph of a sheaf arrangement on n chords is

Pn+1, while a pyramidal arrangement has at least one vertex of degree at least three in

any dimension.

Figure 3.3: A pyramidal arrangement of spheres

However, it is exactly our results on incident and boundary cliques that demonstrate

a map constructed using representative incident pairs is well-defined:that any choice of

representative pair for a given point will be mapped to the same point under a given

graph automorphism. While we will not provide a proof, this follows from our lemmas

on incident cliques, and is not obvious a priori. Furthermore, the use of incident and

boundary cliques demonstrates the surprising geometric properties that can be deduced

entirely combinatorially about graph automorphisms of Cd. Finally, boundary cliques

do not require a choice of representative for each point which aids in succinctness when

proving our main result.

We now have two ways to construct a map of Sd. We can use incident cliques,

choosing a representative for each x ∈ Sd, or we can use boundary cliques, in which case

no choice of representative need be made. In the following section we employ boundary

cliques, but replacing each Kx with a unique Ix suffices to show the same result.
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3.7 Constructing homeomorphisms of the d-sphere via bound-

ary cliques

We start by recalling Theorem 1.1 from [1], which states Georgakopoulos’ result men-

tioned at the start of this chapter.

Theorem 3.1 (Theorem 1.1). The map π is an isomorphism from Aut(Sd) onto Aut(Cd)

for d = 1.

Where π(g) is the graph automorphism canonically induced by a homeomorphism g

of S1, that is, for a chord xy, π(g)({x, y}) = {g(x), g(y)}. Also note that each Möbius

transformation h induces a graph automorphism π(h) canonically.

We prove the following statement for higher dimensions:

Theorem 3.2. The map π from Möb(Sd) to Aut(Cd) is an isomorphism for d ≥ 2.

where π is defined accordingly.

Proof. We follow a proof structure similar to that of Theorem 1.1 in [1]. Specifically, we

use the action of h on boundary cliques to construct a corresponding homeomorphism.

Firstly, π is clearly an injective homomorphism, as ker(π) = id. For surjectivity, we

want to find h′ ∈ Möb(Sd) with π(h′) = h for a given h ∈ Aut(Cd). By Lemma 3.12,

for every x ∈ Sd, h(Kx) = Ky for a unique y ∈ Sd. Define h′ by x 7→ y. We must show

this is indeed a Möbius transformation. To show h′ is injective, suppose x ̸= y ∈ Sd

and h′(x) = h′(y) = z. Then h(Kx) = h(Ky) = Kz, contradicting Lemma 3.12. For

surjectivity, pick y ∈ Sd and note that h−1(Ky) = Kx for some x ∈ Sd by Lemma 3.11,

and so h′(x) = y. Furthermore, for P,Q ∈ V (Cd), we have that:

h(P ) = Q if and only if h′(P ∩ Sd) = Q ∩ Sd (3.9)

as the unique boundary cliques containing P and Q lie along the (d − 1)-spheres that

are their intersections with Sd. (The boundary cliques containing P must be sent to the

boundary cliques containing Q for h(P ) = Q to be satisfied.) From this we see that

π(h′) = h, and so π is bijective. Furthermore, π(g′ ◦ h′)(P ) = g′(h′(P )) = g(h(P )) =

(g ◦ h)(P ) for g′ and h′ constructed as above from two graph automorphisms g, h. This

demonstrates that π respects composition and so is indeed an isomorphism.

Note that Condition 3.9 implies that h′ must preserve (d−1)-spheres, and is bijective.

Thus we satisfy the characterisation of Lemma 2.5 and so h′ is a Möbius transformation

of Sd.
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Furthermore, by using hyperspherical caps, our method of proof extends to the case

d = 1. In this case we find that homeomorphisms constructed from graph automorphisms

preserve nestedness of pairs of points, which suffices to demonstrate that all elements of

Aut(S1) correspond to a unique graph automorphism. In this way we have also provided

an alternative proof of Georgakopoulos’ result.

We now demonstrate explicitly that Möb(Sd) is not isomorphic to Aut(Sd). Firstly,

for d ≥ 2, there are homeomorphisms of Sd which do not preserve chords. Consider a

local dilation, for example (a dilation of the sphere composed with a bump function [17]).

A (d− 1)-sphere which intersects but is not contained in the scaled region will no longer

be a (d − 1)-sphere after the homeomorphism is applied. This certainly demonstrates

that the natural candidate π cannot be an isomorphism between Aut(Cd) and Aut(Sd),
but there may still exist some other isomorphism.

Let us now show such an isomorphism cannot exist, via Thompson’s T group. Firstly,

we note that T ≤ Aut(S1) - indeed, T ≤ Aut+(S1), the group of orientation preserving

homeomorphisms of S1 [18]. Hence, we may embed T in Aut(Sd) as follows. Let us

create the suspension of Sd, SSd := (Sd× [−1, 1])/(Sd×{−1})/(Sd×{1}), which is equal

to Sd+1 [19]. Namely, we quotient by the end faces of Sd × [−1, 1], reducing each to a

point. Now given h ∈ Aut+(Sd), define

ĥ[x, r] = [h(x), r].

as a map Sd+1 → Sd+1. Then ĥ ◦ g[x, r] = [(h ◦ g)(x), r] = [h(g(x)), r] = ĥ ◦ ĝ[x, r],
and so ·̂ respects the group operation. Furthermore, if ĥ = id, then for r ∈ (−1, 1),

[h(x), r] = [x, r] which implies h is the identity, and so the map is injective. One may

also check that ĥ is continuous under the compact open topology. Hence, we have

a continuous embedding of Aut+(Sd) in Aut+(Sd+1). By iterating, we may conclude

T ≤ Aut+(Sd) for all d. We now mention several well-known facts about T . In particular,

T is infinite, finitely generated, and simple - it has no proper normal subgroups. There

are many treatments of the group in the literature, see [20] for example. We say a group

G is residually finite if for any idG ̸= g ∈ G, there is a homomorphism h : G → H

where H is a finite group and h(g) ̸= idH [21]. Then T cannot be residually finite; any

homomorphism from a simple group must be either trivial or injective. So suppose T

is residually finite; this implies we can find injective homomorphisms from an infinite

group into a finite group - an impossibility. Let us then make use of Mal’cev’s theorem,

which states that any finitely generated, linear group is residually finite [21]. Then T
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cannot be linear over any field. But recall from Chapter 2 that Möb(Sd) is isomorphic to

O+(1, d+ 1), which is a subgroup of GLd+2(R). Hence the finitely generated subgroups

of Möb(Sd) are linear and residually finite. Hence, any homomorphism between T and

such a subgroup must be trivial, otherwise T is a linear group and is therefore residually

finite by being finitely generated; a contradiction. This therefore demonstrates that

Möb(Sd) cannot be isomorphic to Aut(Sd) for any d ≥ 2, even as abstract groups.

Hence, we have proved our stated answer to Question 1.

3.8 Extending the action of Aut(Cd) via interior cliques

We now extend the action of Aut(Cd) to the interior of Sd via interior cliques.

Definition 3.8 (Interior clique) Let x ∈ Dd+1\Sd =: int(Sd). We define the interior

clique Jx at x as:

Jx = {P ∈ V (Cd) : x ∈ P}

So an interior clique is the maximal set of pairwise-intersecting chords whose intersection

contains x.

Note that there is a unique interior clique for each point x.

We begin by showing that interior cliques are mapped bijectively by automorphisms

of Cd.

Lemma 3.13. A pair of intersecting, non-incident chords cannot be mapped to a pair

of incident chords by h ∈ Aut(Cd).

Proof. Let P and Q be chords in V (Cd) that intersect but are not incident. Then

Reg({P,Q}) = 4. Clearly h cannot map P and Q to a disjoint pair, as h preserves

adjacency. If h maps the pair P,Q to a pair of incident chords, then we get only three

regions in the image, contradicting that h preserves region count. Hence the image pair

must intersect non-incidentally.

Lemma 3.14. Every interior clique is mapped to an interior clique by h ∈ Aut(Cd).

Proof. As a consequence of Lemma 3.13, we see that n-tuples of pairwise intersecting

chords are preserved. An interior clique Jx is just such a tuple, and so Jx must be sent

to a set of pairwise intersecting chords by h. In fact, the intersection of these chords

must also be a single point. If this is not the case, then we contradict that h preserves

adjacency. Thus h(Jx) ⊆ Jy for some y ∈ Dd+1. Firstly we show that such a y must be
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in int(Sd). If y /∈ int(Sd), then we must have that y ∈ Sd. But this makes Jy a boundary

clique, contradicting Lemma 3.11 when applied to h−1 and Jy. Now if h(Jx) is a proper

subset of Jy, then h−1(Jy) is not contained in Jx but intersects it, which contradicts

that h−1 preserves pairwise intersecting chords. Thus h(Jx) = Jy.

Lemma 3.15. Interior cliques are mapped bijectively by automorphisms of Cd.

Proof. Lemma 3.14 tells us that h(Jx) = Jy for all interior cliques Jx. Now suppose

there are distinct interior cliques Jx and Jy both mapped to Jz by h. But then we may

find a chord in Jx and a chord in Jy that are disjoint. But under h these chords must

intersect at z, contradicting that h preserves adjacency. Hence h maps interior cliques

injectively.

For surjectivity, suppose we have an interior clique Jy. Take a graph automorphism

h. Then Lemma 3.14 tells us that h−1(Jy) is an interior clique.

We now use interior cliques to naturally extend the action of an automorphism of Cd

to the interior of the d-sphere.

Theorem 3.3. Every Möbius transformation ϕ : Sd → Sd as in §3.7 extends to a Möbius

transformation ϕ′ : Dd+1 → Dd+1 via automorphisms of Cd.

Proof. We have seen that for every x ∈ int(Sd), h(Jx) = Jy for a graph automorphism

h ∈ Aut(Cd). We thus extend ϕ via ϕ′ by x 7→ y if and only if h(Jx) = Jy. That is to

say, ϕ′ is defined by the action of h on boundary cliques and interior cliques. Then ϕ′

is bijective as h acts bijectively on both boundary and interior cliques, by Lemmas 3.12

and 3.15. Finally, h(P ) = Q if and only if ϕ′(P ) = Q, where we recall that P and Q

are defined as the intersection of a hyperplane with Dd+1. So in particular, h(P ) = Q

implies that the boundary cliques and interior cliques containing P are sent to those

containing Q. This implies that ϕ′ is a bijective map that preserves Dd+1 and also

preserves (d − 1)-dimensional spheres. If we now define a map ϕ̂′ = ϕ′ on Dd+1 and

ϕ̂′(∞) = ∞, we find that ϕ̂′ is a bijective map of Sd+1 that preserves d-spheres. Hence

we see that ϕ̂′ is a Möbius transformation of Sd+1 by Lemma 2.5, and in particular that

ϕ′ is a Möbius transformation of Dd+1 as a restriction of ϕ̂′.

This provides a novel way to extend Möbius transformations to the interior of the

d-sphere via a purely combinatoric construction.
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3.9 Analysing the structure of Cd

Having concluded that Aut(Cd) ∼= Möb(Sd), we can make some observations on the

structure of the sphere graph.

Observation 3.1 Lemma 3.6 implies that Cd is not edge-transitive. No h ∈ Aut(Cd) can

map an edge of Cd comprising a pair of incident chords to an edge comprising a pair of

intersecting non-incident chords. We see then that the sphere graph is not arc-transitive.

However, Cd is vertex transitive, as Möb(Sd) is transitive on the chords of Sd, by Lemma

2.7.

Observation 3.2 Let us consider h ∈ Aut(Cd). We already know that π−1(h) is a

Möbius transformation on Sd. Following Lemma 2.3, we may pick d+1 arbitrary points

in Sd. These necessarily will lie on a chord, as a (d−1)-sphere is defined by d+1 points.

As long as we pick our (d+2)th point such that it is not on this chord, π−1(h) is completely

determined by its action on these points. Thus h is completely determined by its action

on the boundary cliques determining these points, and furthermore, is determined by its

action on d + 2 pairs incident at these points. So we only need to check finitely many

pairs, and we will determine the entire structure of h. Considering how complex a graph

Cd is - a graph with uncountably many vertices and uncountably many edges, containing

uncountably many cliques - this is a surprising property. It tells us that the symmetries

imposed by intersections and incidence restrict the possible automorphisms enormously.

Observation 3.3 Further to Observation 3.1, we see that automorphisms h distinguish

intersecting, non-incident pairs of chords, and incident pairs of chords, by Lemmas 3.6

and 3.13 Every edge of Cd can therefore be labelled as such. Let us colour incident edges

blue, and non-incident edges red. Then the subgraphs of Cd containing exactly the blue

or red edges have the same automorphism group as Cd, as every h ∈ Aut(Cd) is also an

automorphism of these subgraphs. It is important to stress Cd is not defined so that its

edge set carries such information about the sort of intersection between two chords, so

it is interesting to find that such information is indeed encoded in its edges. Note also

that all prior observations apply to both of these subgraphs.
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Chapter 4

Jordan curves on the 2-sphere

We now consider the intersection graph J of the simple closed curves on S2. Throughout
this chapter, “curve” or “Jordan curve” will refer to the image of a continuous and

injective map γ : S1 → S2. We use “arc” or “Jordan arc” to refer to the image of a

continuous, injective map A : [0, 1] → S2. We often abuse notation and refer to γ or

A itself as the curve/arc, rather than its image. If we have two Jordan arcs A,A′ and

A′ ⊂ A, we refer to A′ as a subarc of A. The aim of this chapter is to prove:

Theorem (Theorem 4.2) π : Aut(S2) → Aut(J ) is an isomorphism.

Again, π(g) is the graph automorphism canonically induced by a homeomorphism g

of S2; for a curve γ, π(g)(γ) = g(γ). That is to say, the group of automorphisms of the

intersection graph of Jordan curves on S2 is isomorphic to the group of all homeomor-

phisms of S2.
We begin with a short overview of Jordan curves.

4.1 The Jordan curve theorem and generalisations

The Jordan curve theorem states that a simple closed curve in the plane divides it into

two disjoint, connected regions, the interior and exterior of the curve. The statement of

this theorem intuitively seems obvious, but the general case requires very careful proof.

A generalisation of the Jordan curve theorem to immersions of manifolds is known as

the Jordan-Brouwer separation theorem [22]. In our case, we are only interested in the

case of spheres, and so we provide a statement of the theorem below.

Theorem 4.1 (Jordan-Brouwer Separation theorem for d-spheres). The image X of

an injective, continuous map γ : Sd−1 → Sd separates Sd into exactly two connected
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components, each with X as their boundary.

We will generally refer to these connected components as regions of the 2-sphere to

align with our terminology from previous chapters.

The generalised Schönflies Theorem [23] states that the closure of each component

as in Theorem 4.1 is homeomorphic to Dd, as long as the closure is indeed a manifold.

For d = 2, we run into no problems with the closure not being a manifold. However,

for d ≥ 3, this is not the case, the canonical counterexample in three dimensions being

the Alexander horned sphere [24] - in which one region is not even simply connected.

Furthermore, Bing showed in [25] that one can join together two horned spheres in such

a manner that the resulting boundary between the two, K, is still homeomorphic to S2,
but neither component of S3\K is simply connected. For the remainder of this chapter

we work only in the case d = 2.

A result equivalent to the generalised Schönflies theorem in two dimensions is what

we will call the Jordan-Schönflies theorem. On R2, this states that any homeomorphism

between two Jordan curves γ and λ extends to a homeomorphism of the whole of R2. In

particular, given a collection of Jordan curves, there is a homeomorphism of the plane

that maps one curve to the unit circle. The same is true on the 2-sphere; given any curve

γ on S2, there is a global homeomorphism sending γ to an equator. There are several

proofs of the theorem in the literature, C. Thomassen gives an interesting graph theory

based proof in [26].

Furthermore, it is a consequence of the generalised Schönflies Theorem that any

point of a Jordan curve is curve-accessible [26]. That is, given a point x on a Jordan

curve γ and a point y not on γ we may find a Jordan arc with endpoints x, y which

intersects γ only at x. Furthermore, due to a result of Alexander [22] the set of points

which are finitely accessible is dense on a given Jordan curve. By finitely accessible,

we mean that there is a Jordan arc of finite length satisfying the requirements for curve

accessibility. Such access arcs allow us to construct curves to demonstrate several results

in this chapter.

4.2 Pathological curves

It is a poor choice to rely on intuition when it comes to the study of Jordan curves.

For example, there are many fractal, nowhere differentiable Jordan curves, such as the

Koch snowflake, or Julia sets of certain complex polynomials [27]. Such curves do not

admit a tangent bundle, and so local arguments are made trickier. Furthermore, there
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are curves of infinite length. Such curves also demonstrate that two Jordan curves

may easily intersect at an infinite number of points, even an uncountable number of

times. There are even Jordan arcs A such that R3\A is not simply connected - as

described by Fox & Artin [28]. Furthermore, there are nowhere differentiable Jordan

curves with positive two-dimensional Lebesgue measure, generally referred to as Osgood

curves [29][30]. It is possible to construct an Osgood curve of any two-dimensional

Lebesgue measure l ∈ (0, 1), via Knopp’s triangle-elimination method [30].

As an aside, no Jordan curve may be space-filling; such curves cannot be injective

as a consequence of Netto’s Theorem [30].

4.3 Distinguishing C2 and J as graphs

Two distinct circles on S2 may only have a region count of three or four. But we may

find two distinct curves γ, λ such that Reg({γ, λ}) = n for any n ≥ 3. This tells us

that the intersection graphs of circles and Jordan curves are not isomorphic - recalling

that region count is ultimately a property of the graphs. In and of itself this does not

guarantee their automorphism groups differ, but instead motivates our investigation.

4.4 Generalising incidence and incident cliques

We begin by introducing generalised notions of incidence and incident cliques.

Definition 4.1 (Types of intersection) Suppose we have two curves γ and λ. Then they

are point-incident if γ ∩ λ = {x} and arc-incident if γ ∩ λ is a Jordan arc, that is, they

agree on some non-singleton, connected subset of the sphere. We say two curves intersect

transversely at a point x if there is a homeomorphism ϕ : U → D2 such that γ and λ are

mapped to two straight crossing lines, for U a neighbourhood of x. Equivalently, we say

they intersect transversely at a point if we may find points of each curve in both sides of

the other for all neighbourhoods of the point. Note that transverse intersection points

must come in pairs, as long as we have only a finite number of such points.

On the sphere there is a choice of which region bounded by a curve should be consid-

ered its interior. In general our arguments will be symmetric whichever choice is made,

but we will occasionally assume curves are orientated to ensure conciseness of exposi-

tion. Also note that what we term point-incidence is generally referred to as “tangency”

or “touching” in the literature [31]. However, we continue to use the terminology of
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Georgakopoulos in the name of consistency. Let us also call a curve circular if it is the

non-empty intersection of a non-tangential plane with S2.
We now begin proving results that allow us to construct a proof of Theorem 4.2.

Lemma 4.1. Two non-disjoint curves divide S2 into exactly three regions if and only if

they are point- or arc-incident. Furthermore, these regions are each homeomorphic to

the open disc.

Proof. We first prove sufficiency of the condition. Take two such curves γ, λ and assume

without loss of generality that both curves are orientated anti-clockwise. Then γ bounds

two connected regions, call the region to the left of γ O1 and the other O2. By the

generalised Schönflies theorem, both O1 and O2 are homeomorphic to the open disc.

Then λ is contained entirely within O1 or O2 except for the incident point or arc. Note

that λ also divides the sphere into two open discs, call the region to the left of λ O3 and

the right region O4. If λ is contained in O1, apart from the incident point or arc, then

we have the following relations:

(i) O1 ∩O2 = ∅

(ii) O3 ∩O4 = ∅

(iii) O3 ⊊ O1 (which implies O3 ∩O2 = ∅)

(iv) O2 ⊊ O4

(v) O1 ∩O4 ̸= ∅

These relations together imply that only O3, O4∩O1 and O2 are non-empty in S2\(γ∪λ).
As stated earlier, we see that O2 and O3 are homeomorphic to the disc.

Let us now make use of Janiszewski’s theorem [32] to show that O4∩O1 is connected.

The theorem states that for two closed sets in R̂2 that any two points which may be

connected via a path avoiding either set may be connected via a path avoiding both

sets. We may apply the theorem to γ and λ on S2 making use of the fact that R̂2 is

homeomorphic to the 2-sphere. Take two points x, y ∈ O4 ∩O1. Then there is certainly

a path connecting x and y that avoids γ, as both points are in O1. Hence we may find a

path that connects x to y which intersects neither γ nor λ. Hence all three non-empty

regions are indeed connected.

We will omit proof of the fact that O4 ∩O1 is homeomorphic to the open disc as we

do not make use of this fact - however, a short argument via Alexander duality suffices.

In fact, the use of Alexander duality provides a much shorter proof of the entire lemma.
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An analogous argument shows we have three regions if λ minus the incident point or

arc is instead contained in O2.

To show that incidence is necessary, assume we have γ and λ such that S2\(γ ∪ λ)

has three components. Consider D = γ\λ, which is an open set. Thus we may express

D as a countable union of open intervals on S1, as a Jordan curve is homeomorphic

onto its image and any open set in R̂ may be expressed as a countable disjoint union

of intervals. Now suppose γ ∩ λ is not connected. Then choose a component I of D.

Let p and q be the points of I\I. The curve λ splits into two arcs with endpoints p

and q, neither of which are subsets of γ, and at least one such arc intersects γ only at

these points. If there is only one such arc A, then η = A ∪ I is a Jordan curve entirely

contained in γ ∪ λ which bounds on one side a fourth region. If there are two such arcs,

then exactly one provides the same result. In both cases we contradict our assumption,

and so γ ∩ λ must be connected and thus is either a point or an arc.

We can then construct further curves incident to both curves at x within each com-

ponent homeomorphic to the disc, as in the following lemma.

Lemma 4.2. For a given Jordan curve γ and a point x ∈ γ, there exists another Jordan

curve λ such that γ ∩ λ = {x}.

Proof. Given γ and x, apply a homeomorphism ϕ of S2 which transforms γ into a circle,

by the Jordan-Schönflies theorem. Now take three distinct points a, b, c contained in a

single open disc bounded by ϕ(γ). Then we may construct arcs ϕ(x)b and ϕ(x)c which

intersect each other only at ϕ(x) and intersect ϕ(γ) only at ϕ(x). We then construct

arcs ab and ac that intersect only at a and intersect the two initial arcs only at those

points whose letters they share. The union of these four arcs, λ is a Jordan curve. Now

apply ϕ−1, and γ and ϕ−1(λ) are two Jordan curves, incident at x.

Note that that λ as constructed in the proof of Lemma 4.2 can always be of finite

length, but a homeomorphism ϕ−1 need not preserve rectifiability.

Lemma 4.3. Let γ be a Jordan curve, and A be a Jordan arc such that A intersects γ

only at its endpoints. Then S2\(γ ∪A) has three connected components.

Proof. The result is symmetric in the choice of interior of γ. Let us assume without

loss of generality that γ is anti-clockwise orientated and that A lies in the closure of the

region left of γ, and intersects γ at points b and c. Let L1 and L2 be the arcs in γ with

endpoints b and c. Then λi := A ∪ Li is a Jordan curve for i = 1, 2. Furthermore, λ1
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and λ2 are arc-incident along A. Hence, S2\(γ ∪A) = S2\(λ1 ∪ λ2) has three connected

components by Lemma 4.1.

The previous lemma finds its use as a way to determine region count in later results.

In particular, given a curve and an arc intersecting that curve only at its endpoints and

which intersects no other curves, the arc divides the region it is contained in into two.

We will refer to this as “repeated use” of the lemma, if multiple such arcs exist.

Lemma 4.4. Two curves which intersect at exactly two points, and intersect at these

points transversely, divide S2 into four regions.

Proof. The result is a consequence of Lemma 4.3 applied twice. In particular, let the

two points of intersection be x and y. Then γ and λ our curves, are formed of two arcs

each; we assume our curves are anti-clockwise orientated without loss of generality. Let

A1 and A2 be the arcs between x and y that are to the left or right of γ respectively. Let

A3 and A4 be the arcs to the left and right of λ respectively, such that γ = A3 ∪A4 and

λ = A1 ∪A2. Then A2 ∪A4 is a Jordan curve and A1 is an arc satisfying the conditions

of Lemma 4.3, when applied to A2 ∪A4. Subsequently, A1 ∪A2 and A3 again satisfy the

conditions of Lemma 4.3. This implies Reg({γ, λ}) = 4.

It is now clear to see that the only way in which two intersecting Jordan curves

can divide S2 into three is if they are point- or arc-incident. Point-incident pairs then

suggest a clear path forwards for constructing homeomorphisms of S2, as they define a

single point of intersection; the next question is whether this remains so under a graph

automorphism of J . To show this, we first show transverse pairs are preserved.

Lemma 4.5. A pair of curves that intersect at exactly two points and do so transversely

is preserved by any h ∈ Aut(J ).

Proof. Suppose that two curves γ and λ intersect at exactly two points x and y, and do

so transversely at these points. In particular, this gives us four regions by the previous

lemma, and so we must have four regions in the image under h. The only other way two

curves may partition S2 into four regions is by being twice incident, that is h(γ) and

h(λ) are incident to each other at two points, two arcs or a point and an arc. Let us

consider the region graphs of these two configurations as illustrated in Figure 4.1. We

see that R{γ,λ} = C4, while R{h(γ),h(λ)} = K4 − e (the complete graph on four vertices

minus an edge). But C4 ̸∼= K4 − e as graphs. We know from Lemma 3.4 that h should

preserve region graphs, and so we have a contradiction. Thus h must preserve transverse

intersection.
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(a) Transverse pair (b) Twice incident pair

Figure 4.1: Region graphs of a transverse pair and a double incident pair are not iso-
morphic. To see this, imagine removing the green or blue curve from each configuration,
and add edges between regions which have merged.

Lemma 4.6. Two curves incident at a single point or arc remain so under any h ∈
Aut(J ).

Proof. By Lemma 4.1 and the fact that h preserves adjacency, an incident pair must

be sent to an incident pair. To expand on this, we know the only configurations of two

adjacent curves that partition the sphere into three regions are an arc- or point-incident

pair. As h must preserve region count, we see that neither pair can be mapped to an

intersecting pair not arc- or point-incident. Secondly, such a pair cannot be mapped to

a disjoint pair, as h is an automorphism of the intersection graph of such curves, and so

must preserve intersection.

We now show the statement of the lemma. Suppose an arc-incident pair, γ, λ is

sent to a point-incident pair by a graph automorphism h. Take two points, a, b, one

in each of the two regions which have the incident arc as part of their boundary. Pick

two points x, y on the arc. Then take four Jordan arcs ax, bx, ay and by such that

bx ∩ ay = ax ∩ by = ∅ and bx, by and ax, ay intersect only at their common endpoints.

To justify the existence of such arcs, we use the Jordan-Schönflies theorem [26]. In

particular, there is a homeomorphism sending γ to a circle, and this homeomorphism

may be extended to the entirety of S2. We may then construct two such arcs within the

region bounded entirely by the circular image of γ. By performing a similar process with

λ we see four such arcs exist. Then the union of these four arcs, η, is a Jordan curve

intersecting the incident arc at two points, and intersecting γ and λ only at these two
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points - note that these are transverse intersections. This curve adds two new regions to

the preimage by Lemma 4.3, so that Reg({γ, λ, η}) = 5. But there is no such curve h(η)

in the image. To show this, firstly observe that h(η) must intersect h(γ) and h(λ) at

two distinct points each, and these intersections must be transverse, by Lemma 4.5. We

recall that by hypothesis h(γ) and h(λ) are point-incident - now consider the possible

cases.

(i) None of the intersection points of h(η) with h(γ) and h(λ) are the incident point.

In this case Reg({h(γ), h(λ), h(η)}) = 7 ̸= 5.

(ii) One of the intersection points is the incident point. Then Reg({h(γ), h(λ), h(η)}) =
6 ̸= 5.

In all cases we are using Lemma 4.3 repeatedly to calculate region count. In case (i)

h(η) has four distinct intersection points, and in case (ii) has only three. In all cases

preservation of region count under h is violated, and thus an arc-incident pair must be

mapped to an arc-incident pair. It follows that point-incident pairs are preserved.

We can now define generalisations of the incident tuples defined in Chapter 3.

Definition 4.2 (Incident tuples) A point-incident n-tuple at x is a collection of n curves

where pairwise intersections are all equal to x. An arc-incident n-tuple on an arc A is a

collection of n curves where pairwise intersections are all equal to A. We also define a

subarc-incident n-tuple. This is a collection of n curves such that there is a maximum

pairwise intersection γi ∩ γj = A and all other pairwise intersections are subarcs of

A, or a point in A. Hence all arc-incident tuples are also subarc-incident tuples, and

a point-incident tuple is simply a subarc-incident tuple wherein the maximal pairwise

intersection is a single point. See Figure 4.2 for an example of each. We term a subarc-

incident tuple that is neither a point- nor arc-incident tuple proper.

Note that all the incident n-tuples defined here have region count n+1. Furthermore,

the region graph of a point-incident tuple is a starlike tree on n+ 1 vertices [33], a tree

where at most one vertex is of degree greater than two (in Figure 4.2(a), we get Pn+1. In

Figure 4.3 we instead get K1,11, and Observation 4.1 makes clear why we get the starlike

trees.). The region graph of an arc-incident n-tuple is Pn+1, and the region graph of a

proper subarc-incident n-tuple is a tree on n+1 vertices. This aligns with the fact that

all incident tuples are subarc-incident, as all region graphs here are themselves trees on

n+ 1 vertices.

We first show that point-incident tuples are preserved by automorphisms of J .
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Figure 4.2: Example (a) is a point-incident 6-tuple, see Figure 4.3 for another example.
Example (b) is an arc-incident 6-tuple and example (c) is a proper subarc-incident 7-
tuple.

Lemma 4.7. A point-incident n-tuple is preserved by any automorphism h of J .

Proof. We see that such an n-tuple must give us n + 1 regions, by the logic of Lemma

4.1. The only configurations of n curves that divide the sphere into n + 1 regions are

the union of some or all of the following:

(i) d disjoint curves - meaning not adjacent to any other curve in the union.

(ii) p point-incident tuples, each containing rp curves

(iii) a arc-incident tuples, each containing ma curves

(iv) s proper subarc-incident tuples, each containing us curves

such that
∑p

i=1 ri+
∑a

i=1mi+
∑s

i=1 ui+d = n. Note that a single point-incident n-tuple

is the case wherein p = 1, r1 = n and a, s, d = 0. Given that h preserves region count, the

image must be such a union. If our n-tuple is mapped to a configuration containing some

disjoint curves, then this contradicts that adjacency is preserved under h, so d = 0 and

exactly one of p, a, s = 1 otherwise we contradict Lemma 4.6. Furthermore, by Lemma

4.6, no pair of curves in our point-incident n-tuple may be sent to an arc-incident pair,

and thus a, s = 0 and p = 1.

Corollary 4.1. An arc-incident n-tuple is preserved by any graph automorphism h of

J .

Proof. It follows from Lemma 4.7 applied to h and h−1 that a subarc-incident n-tuple,

S on an arc A is sent to a subarc-incident n-tuple S′ on an arc B. We show that if S is

in fact an arc-incident n-tuple, that S′ is as well. Suppose towards a contradiction that

S is an arc-incident n-tuple on the arc A, but that S′ := h(S) is only subarc-incident

on an arc B. In S′ we take a pair γ, λ whose intersection is B, and a curve η such that
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η ∩ γ = η ∩ λ ⊊ B. Call this intersection B′, which may be an arc or a point. Note

that such curves exist by the definition of a proper subarc-incident n-tuple. Now, we

have some closed Jordan arc B′′ ⊊ B\B′ such that B′′ ∩ η = ∅ and B′′ ⊊ γ, λ. Take

two points x, y ∈ B′′, and a third point a in a region whose boundary contains B′′ and

B′ but not the open arc η\B′. Then such a region is homeomorphic to the open disc by

Lemma 4.3, and so we may construct arcs ax and ay as well as xy, so that they intersect

only at their endpoints. Call the curve that is the union of these three arcs µ. Then

under h−1, µ must be arc-incident to A and disjoint from h−1(η). But this is impossible,

as A ⊊ h−1(η) due to S being an arc-incident n-tuple. Hence we have a contradiction

and S′ must be arc-incident.

Corollary 4.2. A proper subarc-incident n-tuple is preserved by any automorphism h

of J .

Proof. This follows from Lemma 4.7 and Corollary 4.1.

Given our results on finite incident collections of curves, we now show similar results

for infinite collections.

Definition 4.3 (Point-incident cliques) A point-incident clique Px is a maximal collec-

tion of curves pairwise point-incident at a point x.

By maximal, we mean that for any curve γ not in Px, there exists some curve λ in

Px such that ∅ ̸= γ ∩ λ ̸= {x}. Note that we have infinitely many point-incident cliques

at a given point, and these cliques are not disjoint. For example, start with a circle

through a point x. We could construct an incident clique at x as in Chapter 2, which

is a point-incident clique. Another choice would be to construct a point-incident clique

at x using much more jagged curves. Both such cliques contain the circle, but differ

everywhere else.

Before showing point-incident cliques offer a well-defined map of points under the

action of a graph automorphism, we make an important observation on their structure.

Observation 4.1 In Chapter 2, recalling that each chord defined a unique circular

curve, we saw that incident cliques necessarily had a nested structure. At first glance,

the same does not appear to be true for general curves, we may have an arbitrary number

of non-nested curves meeting at a single point, as demonstrated in Figure 4.3. We show

that any point incident clique contains a sequence of at least n nested curves.

Suppose we have a point-incident clique with no nesting, so is formed of a number

of spikes meeting at a point. By the logic of Lemma 4.1, at least one side of each of
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these spikes is homeomorphic to the open disc. We may therefore choose an individ-

ual curve, and place a Jordan curve - within the side homeomorphic to the open disc -

that is incident at the same point. We may then repeat this process iteratively, placing

new curves within the previously placed curve. This demonstrates that the initial ar-

rangement was not maximal, and so did not in fact constitute a point-incident clique.

This can be done for every spike, and so every curve in an incident clique will contain

some nesting. Consequently, all point-incident cliques have sequences of nested curves

of arbitrary length.

Figure 4.3: Illustration of “spikes” all incident at a point. The spikes may be far more
complex than shown of course.

We now show several crucial properties of point-incident cliques, analogous to results

in Chapter 3 for incident cliques, but requiring much more careful proof.

Lemma 4.8. Point-incident cliques are preserved by any h ∈ Aut(J ). Secondly, h

acts injectively on distinct point-incident cliques. Thirdly, h acts surjectively on point-

incident cliques. Furthermore, h preserves distinctness or sameness of the incident point;

point-incident cliques at different points are mapped to different points, and distinct

point-incident cliques at the same point are mapped to the same point.

To clarify the statement of the lemma, by acting injectively, we mean that for Px ̸= Py

at distinct points x, y, h(Px) ̸= h(Py) and for P 1
x ̸= P 2

x both at a point x, h(P 1
x ) ̸= h(P 2

x ).

By h acting surjectively, we mean given Py there exists a unique Px such that h(Px) = Py.

We now proceed to a proof.
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Proof. A point-incident clique is preserved as a consequence of Lemma 4.7; every finite

subset of the clique must be sent to a point-incident tuple at the same point.

We now show that point-incident cliques Px and Py at distinct points cannot be

mapped to distinct point-incident cliques at the same point z. Suppose towards a con-

tradiction that this is the case for a given graph automorphism h. Take a curve γ ∈ Px

such that y /∈ γ and a nested triple λ3 < λ2 < λ1 ∈ Py, where “<” indicates the left curve

is nested within the right curve. Such a curve γ exists in Px; if there were no such curve

then all curves in Px would contain y, contradicting the definition of a point-incident

clique (Px contains at least two curves by Observation 4.1). We justify the existence of a

nested triple in Py as a consequence of Observation 4.1, such a triple is a point-incident

3-tuple at y.

By the Jordan-Schönflies theorem, apply a global homeomorphism sending λ1 to a

circle λ′1. This homeomorphism preserves the order of nestedness of the triple, and we

retain a single common incidence point for the triple λ′1, λ
′
2, λ

′
3 in the image. Call this

point y′. Note that γ′ - the image of γ - cannot contain y′, and that this image curve

is a closed set. So y′ ∈ S2\γ′ which is an open set, and so we may find an open disc

D centred on y′ that does not intersect γ′. We may then find a small circular Jordan

curve, which we shall call η′, contained in this open disc which does not intersect γ′ and

which is incident to the image triple at y′. To justify this claim, λ′1 is a circle, and the

boundary ∂D is also a circle. Hence the regions bounded within ∂D whose boundaries

do not meet λ′2 - which exist due to preservation of nestedness - are homeomorphic to

the open disc. Note that the image triple and η′ together form a point-incident 4-tuple.

Now apply the inverse homeomorphism and call the image of η′ under this map η. Now

we find that the λis are pairwise incident to η at y and that η ∩ γ = ∅. Now apply h.

The image of the pairwise incident 4-tuple consisting of the λis and η is incident at z.

Furthermore, z ∈ h(γ) as both h(Px) and h(Py) are equal to some point-incident cliques

P 1
z , P

2
z by supposition. But this provides a contradiction, as h(η) ∩ h(γ) ∋ z as both

are curves through z, which contradicts that h preserves adjacency of curves. Hence we

conclude that the images of Px and Py under h must be point-incident cliques at distinct

points.

This implies that h maps point-incident cliques at different points injectively, and

as a consequence of the same being true for h−1 we conclude that every point-incident

clique Py is the image of some point-incident clique. Thusly, we see that h is bijective

in its action on point-incident cliques at distinct points.

It remains to show that distinct point-incident cliques P 1
x and P 2

x are mapped to distinct
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point-incident cliques at a point y. Given a graph automorphism h, we see from the first

part of the proof that h−1 cannot map point-incident cliques at different points to P 1
x

and P 2
x . Thus their images must be of the form P 1

y , P
2
y for some point y. For distinct-

ness, recall that the fact P 1
x and P 2

x differ implies, without loss of generality, that there

is a curve γ ∈ P 1
x such that γ /∈ P 2

x . In particular, given that x ∈ γ, this means there

exists λ ∈ P 2
x such that γ ∩ λ ̸= {x}, otherwise this would contradict the maximality of

P 2
x . If both are mapped to the same point-incident clique, then this contradicts Lemma

4.6 when applied to γ and λ. Given the surjectivity of h deduced in the first part of the

proof, we conclude that every Py at a fixed y is the image of some Px at a fixed x.

We have shown the statement of the lemma, and in particular demonstrated that the

action of h on point incident cliques is well-defined.

Let us now focus on arc-incident cliques.

Definition 4.4 An arc-incident clique AB is a maximal collection of curves such that

for any pair of curves γ, λ ∈ AB, γ ∩ λ = B, where B is a Jordan arc.

Note that Observation 4.1 also applies to arc-incident cliques in general, so we can

find nested sequences of arbitrary length in such a clique. We now show a result very

similar to Lemma 4.8 for arc-incident cliques.

Lemma 4.9. Arc-incident cliques are preserved by any h ∈ Aut(J ). Given two distinct

arc-incident cliques AB1 and AB2, the following hold:

(i) If B1 ∩B2 = ∅, then the same is true under h.

(ii) If B1 ̸= B2 and B1 ∩B2 ̸= ∅ then the same is true under h.

(iii) If B1 = B2 then the same is true under h.

and h maps (i), (ii) and (iii) bijectively.

Proof. The fact that an arc-incident clique is sent to an arc-incident clique by a graph

automorphism follows from Corollary 4.1. We refer to the three arrangements of the

incident arcs as type (i), type (ii) and type (iii). Our strategy is to show that

(1) Type (i) cannot be sent to type (iii).

(2) Type (ii) cannot be sent to type (iii)

(3) Type (i) cannot be sent to type (ii).
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in this order. The proofs for all three share much with that of Lemma 4.8. Our argu-

ments also apply to h−1, which suffices to show the reverse direction of each case.

(1): In a similar vein to Lemma 4.8, take a nested triple λ1, λ2, λ3 ∈ AB1 forming

an arc-incident 3-tuple. Again, such a triple exists by the logic of Observation 4.1. Also

take a curve γ ∈ AB2 such that γ ∩ B1 ̸= B1. Such a curve certainly exists, otherwise

every curve in AB2 intersects along B1, contradicting the definition of an arc-incident

clique.

Now apply a global homeomorphism ϕ which sends λ1 to a circle λ′1 by the Jordan-

Schönflies theorem, where we use the same notation as Lemma 4.8. Then γ′ does not

contain the incident arc of the image triple. Call this incident arc B′
1 and take a point

x ∈ B′
1\γ′. Again we may take an open disc centred on x that does not intersect γ′ as

the complement of γ′ is open. We can then construct a small curve incident to B′
1 at a

single point and which does not intersect γ′. Call this curve η′. Now apply ϕ−1 and h,

supposing that h maps our cliques onto a single arc, B3. Firstly, note that λ1, λ2, λ3, η

form a proper subarc-incident 4-tuple, which is preserved by ϕ−1 and also by h, due

to Corollary 4.2. Hence h(η) is incident to B3. But B3 ⊂ h(γ), which implies that

h(η) ∩ h(γ) ̸= ∅, which contradicts that h preserves non-adjacency.

Hence type (i) and type (iii) cannot be interchanged under h.

(2): The proof is very similar to that of (1) and so we only provide a brief overview.

Take a nested triple in AB1 and a curve γ ∈ AB2 which does not contain B1. We apply a

global homeomorphism sending a member of the triple to a circle, and construct a small

curve incident to our triple and disjoint from γ. This forms a proper subarc-incident

4-tuple which is then preserved by the inverse homeomorphism and h. If both cliques

are mapped onto the same incident arc, then the constructed curve must intersect h(γ),

which is a contradiction.

Hence types (ii) and (iii) cannot be interchanged under h.

(3): Again, the proof is similar to that of (1).

Thus each type must be preserved by h. All that remains is to show h is bijective

in its action. Clearly, h is certainly injective on types (i) and (ii), as they cannot be sent

to arc-incident cliques on the same arc. Furthermore, h must be injective on type (iii)

by the following argument. Take γ ∈ A1
B with γ /∈ A2

B, and λ ∈ A2
B such that γ∩λ ̸= B,

so γ and λ are not arc-incident. But if h(A1
B) = h(A2

B) then h(γ) and h(λ) must be
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arc-incident, contradicting Lemma 4.6. Surjectivity is then guaranteed by the injectivity

of both h and h−1.

A subarc-incident clique is a maximal collection of curves such that some pair of

curves define a maximal intersection, and all other pairwise intersections are subarcs or

points in the maximal intersection. We term such a clique proper if it is neither a point-

nor arc-incident clique. Note that we have covered the case where both subarc-incident

cliques are point-incident cliques in Lemma 4.8, and the case where both are arc-incident

in Lemma 4.9. Preservation of such cliques is already a consequence of Corollary 4.2.

The arguments of Lemmas 4.8 and 4.9 also suffice to show similar results on proper

subarc-incident cliques, and so we will omit these to avoid repetition.

Before defining boundary cliques, we first show a stronger result on intersection

preservation under graph automorphisms.

Lemma 4.10. If two curves γ, λ are incident at n-points and m-arcs and intersect

transversely at k points, then h(γ), h(λ) under any h ∈ Aut(J ) do so as well.

Proof. Observe that the intersection points and arcs are cyclically ordered, as they occur

around two simple closed curves. Let us first enumerate the transverse intersection points

and incident points and arcs as i1, i2, . . . in+m+k.

We show that the number of transverse intersection points, the number of incident

points and the number of incident arcs each remain unchanged under a graph automor-

phism h. Observe that Reg({γ, λ}) = n +m + k + 2. We call the resulting numbers of

intersections and incidences under h k′, n′ and m′. If n′ +m′ + k′ ̸= n +m + k then

Reg({h(γ), h(λ)}) = n′ +m′ + k′ +2 ̸= n+m+ k+2, a contradiction. So let us assume

n′+m′+k′ = n+m+k. If k′ ̸= k then R{γ,λ} is not isomorphic to R{h(γ),h(λ)}. While it

is not especially difficult to see this immediately, we go into much more detail in Lemma

6.1.

Now we show n′ = n and m′ = m, assuming k′ = k, by considering cases. If

n′ + m′ ̸= n + m, then Reg({h(γ), h(λ)}) = n′ + m′ + k + 2 ̸= n + m + k + 2, a

contradiction. Therefore, we assume without loss of generality that n′ = n + a and

m′ = m− a, where a ≤ m. We construct what we term linking curves. For now, let us

assume m is even and n, k ̸= 0. Construct curves Mj,j+1 where j, j + 1 mod n+m+ k

such that:

(i) Mj,j+1 ∩Mj−1,j = ij

(ii) Mj,j+1 ∩Mj+a,j+a+1 = ∅ for a ̸≡ 1,−1 mod n+m+ k.
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(iii) Mj,j+1 ∩ γ = ij ∪ ij+1

(iv) Mj,j+1 ∩ λ = ij ∪ ij+1

Condition (i) implies that only linking curves between consecutive intersections or

incidences intersect, and that they do so incidentally. Condition (ii) implies that no

other pairwise intersections occur. Conditions (iii) and (iv) tell us that the linking

curves intersect γ and λ at no other points. See Figure 4.4 for an example.

i1

M2,3

γ

λ

M1,2

M3,4
M5,6 M7,8

M9,10

M8,9
M6,7

M4,5

M10,1

i2

i3

i4 i5
i6

i7 i8 i9
i10

Figure 4.4: Example of linking curves for k = 4, n = 5 and m = 1. Note that linking
curves only need to swap sides at an incident arc.

Under h, each linking curve remains incident only to those it intersected in the

preimage, as h preserves adjacency. Furthermore, the type of incidence is preserved

by Lemma 4.6, two linking curves incident on an arc remain so and the same is true

for those incident at a point. Linking curves then allow us to show that m′ = m as

follows. Firstly, note that two arc-incident linking curves can only be arc-incident along

an incident arc of γ and λ. If this were not the case then we necessarily contradict

condition (iii) or (iv). In the preimage we have two linking curves arc-incident at every
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incident arc. If m′ = m − a > 0 then we must have more than two linking curves arc-

incident to some incident arc in the image by the pigeonhole principle, which contradicts

that non-consecutive linking curves are disjoint. If m′ = 0 then we contradict that arc-

incidence between linking curves is preserved. Hence m′ = m and so n′ = n; similar

logic applies if n′ = n− a and m′ = m+ a for a ≤ n.

If m is instead odd and both n, k = 0, then we cannot construct linking curves

satisfying our conditions. At each incident arc we must swap sides to avoid transverse

intersection, and so swapping an odd number of times leaves a curve having to intersect

at least one other curve transversely. Instead, we may construct linking curves avoiding

a single incident arc. Doing this for every such subset of the incident arcs shows that

m− 1 = m′ − 1 on all such subsets, and so m = m′ must hold.

4.5 Generalising boundary cliques

As in Chapter 3, we could choose a representative point-incident clique at each point x

to then construct a homeomorphism from. We instead proceed to use boundary cliques

to streamline the proof at the end of this section.

Definition 4.5 (Boundary clique) We define a boundary clique to be the union of all

point-incident cliques at x.

By our earlier results on incidence, we may find a curve point-incident to any curve

through x, at x. Thus every curve through x is indeed in a point-incident clique at x.

Hence a boundary clique at x does contain every curve through x, and so is unique. We

could equivalently define a boundary clique at x as the collection of all curves containing

x, but this definition highlights that point-incident cliques are the fundamental building

blocks of boundary cliques.

Lemma 4.11. Boundary cliques are preserved by graph automorphisms, and are mapped

bijectively by any h ∈ Aut(J ).

Proof. Let us take a boundary clique Kx. Then h(Kx) = Ky for some y, as h(Kx) =

h(
⋃
Px) =

⋃
h(Px) = Ky. Given Ky, take an incident pair γ, λ ∈ Ky. Then h

−1({γ, λ})
is contained in some point-incident clique at a point x. It follows that h−1(Ky) = Kx,

and so surjectivity is satisfied. Furthermore, h(Kx) ̸= h(Kz) for all x ̸= z, by an

argument analogous to that in the proof of Lemma 4.8. In particular, we can take a

nested point-incident 3-tuple in Kx, and a curve Ky which does not contain x. Then we

can construct a small curve incident to the triple which does not intersect the curve inKy.
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If h(Kx) = h(Ky) then this implies these two curves intersect, which is a contradiction.

Hence we have shown bijectivity of h on boundary cliques.

We see that boundary cliques still offer us a well-defined map of S2. We now utilise

this fact to prove the main theorem of this chapter.

Theorem 4.2. π : Aut(S2) → Aut(J ) is an isomorphism.

Note that a homeomorphism g necessarily sends a Jordan curve to a Jordan curve,

as g(γ) : S1 → S2 is injective and continuous.

Proof. To see that π is injective, observe that ker(π) = id. Furthermore, to show that

π is surjective, we construct a homeomorphism h′ such that π(h′) = h, for a given

h ∈ Aut(J ). Construct such an h′ from h by its action on boundary cliques; h′(x) = y

for h(Kx) = Ky.

We must show h′ is indeed a homeomorphism. Firstly, h′ is bijective by Lemma 4.11

and so we may consider its inverse h′−1. For continuity, we show the preimages of open

discs on S2 are open, this suffices as the discs form a basis for the standard topology

on S2. So take an open disc, D, on S2. Take the boundary of the disc, ∂D, which is a

simple closed curve itself. We see that h′−1(∂D) is a simple closed curve, and is thus a

closed set, and hence divides the 2-sphere into two open regions. Then by our earlier

results, the open disc D must be sent to one of these regions by h′−1. Hence we see that

h′−1(D) is open and as S2 is Hausdorff and compact, h′ is a homeomorphism.

Finally, for g′, h′ homeomorphisms such that π(g′) = g and π(h′) = h for g, h ∈
Aut(J ) and γ ∈ V (J ), we have that:

π(g′ ◦ h′)(γ) = (g′ ◦ h′)(γ) = g′(h′(γ)) = g(h(γ)) = (g ◦ h)(γ)

which demonstrates that π respects composition.
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Chapter 5

Smooth Jordan curves on the

2-sphere

In this chapter we consider the intersection graph, S∞, of the simple smooth - meaning

C∞ - closed curves on the 2-sphere. We then consider the intersection graph Sk of the

Ck simple closed curves on S2. Such curves are the image of an injective, continuous, Ck

function γ : S1 → S2, where k ∈ Z+∪{∞}. Throughout this chapter, “curve” will refer to
a simple closed curve, where its differentiability class is clear from context. We often refer

to C∞ curves as “smooth”. We show the group of homeomorphisms naturally associated

to the automorphisms of Sk is strictly larger than the group of Ck-homeomorphisms of

S2 for k ∈ Z+ ∪ {∞}.

5.1 Smooth manifolds

In order to have a notion of smoothness on the 2-sphere, we require that we consider

S2 as a smooth manifold. This is a rich and fascinating area, but is not the focus of

this thesis and so we only give a basic overview based on John M. Lee’s Introduction

to Smooth Manifolds[17]. In the simplest terms, a topological space M is a manifold

if it is Hausdorff, second countable, and is locally homeomorphic to Euclidean Rd. To

clarify the third point, this means that every point p ∈M has an open neighbourhood,

U , homeomorphic to some open subset of Rd. A pair (U, ϕ) is called a chart, where ϕ

is the aforementioned homeomorphism and U is called the chart’s domain. Two charts,

(U, ϕ), (V, ψ), are smoothly compatible if either U ∩ V = ∅, or U ∩ V ̸= ∅ and the map

ψ ◦ ϕ−1 is smooth as a map on Rd. An atlas, A is a collection of charts whose domains

cover M , and is smooth if any two charts in A are smoothly compatible. We can then
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define a maximal smooth atlas onM , a smooth atlas not contained in any larger smooth

atlas. Then a smooth manifold is the pair (M,A ), where M is a topological manifold,

and A is a maximal smooth atlas. In general it is unnecessary to specify a maximal

smooth atlas on M , as such an atlas is unique for a given smooth atlas.

For S2, a common smooth atlas is given by two stereographic projections from the

north and south poles. That is, we take an open cover consisting of the two sets

S2\(0, 0, 1) and S2\(0, 0,−1), and homeomorphisms as stereographic projections from

each removed point. Then this gives us two charts of S2 and it can be easily checked

that these charts are smoothly compatible.

Given a map f : M → N where M and N are smooth manifolds, f is smooth if,

for every p ∈ M , there exist smooth charts (U, ϕ) ∋ p and (V, ψ) ∋ f(p) such that

f(U) ⊆ V and ψ ◦ f ◦ ϕ is smooth from ϕ(U) to ψ(V ). In our case, we are looking at

maps γ : S1 → S2 and so we care about smoothness of ψ ◦ γ ◦ ϕ−1 : R → R2, where ϕ

and ψ are stereographic projections identifying open neighbourhoods of Sd with Rd for

d = 1, 2 respectively. Hence, when we describe a Jordan curve γ as Ck, for k ∈ Z+∪{∞},
we ultimately mean the prior composition is Ck as a map from R to R2.

5.2 Distinguishing C2, J and S∞ via region counting

Using the argument of §4.3, we see that S∞ and C2 are not isomorphic as graphs.

Furthermore, S∞ and J are not isomorphic. Let us take a point-incident n-tuple

of smooth curves, with n ≥ 5. Then the region graph of such a collection is Pn+1, the

path on n+ 1 vertices. However, this need not be true for general curves. Consider the

example in Figure 5.1, which is a point-incident 5-tuple with region graph K1,5.

5.3 The intersection graph of C∞ curves on S2

As our curves are smooth, we may define the tangent space of a given curve. We say

that two smooth curves intersect transversely at a point if the tangent lines are linearly

independent and tangentially at a point if the tangent lines are equal. If two curves

intersect exclusively transversely, we will say they intersect transversely, otherwise we

will refer to their intersection as tangential. When we refer to an arc, we mean an

open curve. All properties proved for automorphisms of J are true of automorphisms

of S∞. Note that all properties of h ∈ Aut(J ) when applied to general curves are true

of h ∈ Aut(S∞) when applied to C∞ curves. We therefore list all such properties but
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Figure 5.1: Example of a non-path region graph for general curves

omit proofs, except those that demonstrate the differences between smooth and general

curves.

Lemma 5.1. Suppose γ ̸= λ are two simple smooth closed curves, with γ∩λ ̸= ∅. Then

γ, λ partition S2 into three regions if and only if γ ∩ λ is path connected.

Proof. See Lemma 4.1.

Lemma 5.2. All graph automorphisms h of S∞ preserve arc-incident pairs.

Proof. See Lemma 4.6.

Corollary 5.1. Graph automorphisms of S∞ preserve point-incidence.

Proof. See Lemma 4.6.

Corollary 5.2. Graph automorphisms of S∞ preserve transverse intersection points.

Proof. See Lemma 4.5.

We then define point-incident cliques and arc-incident cliques.

Definition 5.1 (Point-incident cliques) Given a point x ∈ S2, a point-incident clique at

x is a maximal collection of curves such that γi ∩ γj = {x} ∀i, j ∈ I our indexing set.

Definition 5.2 (Arc-incident cliques) Given a smooth arc A ∈ S2, an arc-incident clique

at A is a maximal collection of curves such that γi ∩ γj = A ∀i, j ∈ I our indexing set.
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Lemma 5.3. The image of either clique under an automorphism of S∞ is another such

clique at either a point or an arc respectively.

Proof. See Lemmas 4.8 and 4.9

Lemma 5.4. Two smooth curves intersecting transversely at k points, incidentally at n

points and at m arcs do so under h ∈ Aut(S∞).

Proof. See Lemma 4.10.

We then define our boundary cliques, and show our standard results.

Definition 5.3 A boundary clique at x, Kx, is the union of all point-incident cliques at

x.

Clearly a boundary clique contains all curves through x as every such curve is in

some point-incident clique at x.

Lemma 5.5. An automorphism of S∞, h, maps boundary cliques bijectively.

Proof. Follows the logic of the proof of Lemma 4.11

We now denote the group of homeomorphisms of S2 that preserve smooth curves in

both the forward and backward direction as Aut∞(S2). We then prove the main theorem

of this section,

Theorem 5.1. The map π : Aut∞(S2) → Aut(S∞) is an isomorphism, where Aut∞(S2)
is the group of homeomorphisms of S2 such that h and h−1 preserve the class of C∞

curves, for h ∈ Aut∞(S2).

and we explicitly show that there are homeomorphisms of S2 that preserve all smooth

curves but which are not smooth themselves, via an argument of Le Roux and Wolff [7].

In particular, we denote the group of smooth homeomorphisms of S2 as Diff∞(S2), and
show the following:

Proposition 5.1. Diff∞(S2) ⊊ Aut∞(S2)

Let us first prove Theorem 5.1.

Proof of Theorem 5.1. Firstly, ker(π) = id, and so π is injective. We know from Lemma

5.3 that for a boundary clique at x, Kx, h(Kx) = Ky for some unique y ∈ S2. Define

a map h′ by x 7→ y. Then h′ is injective, no two boundary cliques are mapped to the

same point. Furthermore, h′ is surjective, as every Ky is the image of a Kx under h. To
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show h′ is continuous, use the argument on open discs as in the proof of Theorem 4.2.

Hence as S2 is Hausdorff and compact, h′ is a homeomorphism. We therefore find that

h′ is a homeomorphism which preserves smooth Jordan curves. Furthermore, π(h′) = h,

and so π is surjective. The map π also respects composition as in the proof of Theorem

4.2.

Let us now show Proposition 5.1.

Proof of Proposition 5.1. We modify a construction of Le Roux and Wolff [7]. Let

g : R → R be a smooth diffeomorphism supported in the segment [1/2, 2]. That is

to say, g(x) = x for all x /∈ [1/2, 2]; we suppose however that g(1) ̸= 1. We consider the

map F : R2 → R2 defined as

F (x, y) =

(x, xg(y/x)) if x ̸= 0

(x, y) if x = 0
(5.1)

This map, as well as its inverse, is obviously smooth in restriction to R2\(0, 0). But we
find that dF(0,0)(1, 0) = (1, 0), dF(0,0)(0, 1) = (0, 1) but dF(0,0)(1, 1) = (1, g(1)) ̸= (1, 1).

Hence we see that the differential of F at (0, 0) is not linear, and so F is not differentiable

at the origin.

We introduce a bump function, allowing us to transfer F onto S2. Define χ : R2 →
[0, 1] such that χ = 1 on a disc D(0, r) ⊂ R2 and χ = 0 on R2\D(0, 2r) and χ is

smooth (See [17] for explicit constructions). Then define Fχ(x, y) = χ(x, y)F (x, y) +

(1−χ(x, y))(x, y). Then Fχ is smooth except at the origin, equal to F within a disc, and

equal to the identity outside a larger disc, furthermore, it transitions smoothly between

the two.

Now let (U, ϕ : S2 → R2) be a stereographic projection where U contains the north

pole, as in §5.1. Then define the map

F̃ (p) =

ϕ−1 ◦ Fχ ◦ ϕ(p) if p ∈ U

p if p /∈ U
(5.2)

Then this gives us a well-defined homeomorphism of S2, smooth everywhere but the

north pole. Now let γ : S1 → S2 be a smooth curve. If the image of γ does not contain

the north pole, N , then F̃ ◦γ is clearly still a smooth curve. Now suppose without loss of

generality that γ(0) = N , where we are parametrising S1 via R̂. If γ′(0) /∈ [1/2, 2] then

F̃ ◦γ and γ are locally the same around N , in U . That is, for S1 ∋ t→ 0, F̃ ◦γ(t) = γ(t)
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for small enough t. Otherwise, we may write γ(t) = (t, α(t)) up to reparametrisation,

for t near 0, where α is a smooth map, and α(0) = 0. Then we have

F̃ ◦ γ = (t, tg(α(t)/t))

for small t. So as the map t→ α(t)/t for t ̸= 0 and t→ α′(0) when t = 0 is smooth, we

see that F̃ ◦ γ is smooth.

So we have found a function that maps all smooth curves on S2 to smooth curves,

but which is not smooth itself. So we may conclude that Diff∞(S2) ⊊ Aut∞(S2).

5.4 The intersection graph of Ck curves on S2

As in the previous section, all results proven in Chapter 4 hold for Ck curves, for k ∈ Z+.

So in particular, we may define boundary cliques, and these boundary cliques are mapped

bijectively. We may distinguish each Sk (k ≥ 1) from J and C2 by the argument of §5.2.
We have that S0 = J , and so we will assume k ≥ 1 for the remainder of this chapter.

Within this section, we prove the following theorem

Theorem 5.2. The map π : Autk(S2) → Aut(Sk) is an isomorphism, where Autk(S2)
is the group of homeomorphisms of S2 such that h and h−1 preserve the class of Ck

curves, for h ∈ Autk(S2).

We then prove the following proposition

Proposition 5.2. Diffk(S2) ⊊ Autk(S2)

where we denote by Diffk(S2) the group of Ck homeomorphisms of the 2-sphere.

Proof of Theorem 5.2. The proof is exactly that of Theorem 5.1.

Proof of Proposition 5.2. Observe that the map F̃ defined in the proof of Proposition

5.1 also preserves all Ck curves, but is not itself Ck. Hence this provides an example of

a map in Autk(S2)\Diffk(S2).

Let us now prove a further result which demonstrates that each Sk is distinct.

Proposition 5.3. For every k, there is a function that preserves Ck curves, but not

Ck+1 curves. Hence Autk+1(S2) ⊊ Autk(S2) for all k.
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Proof. We modify the proof of Proposition 5.1. Let us first define fk(x) = xk|x|, for
k ≥ 1. Then fk is Ck but not Ck+1, which can be deduced from the one sided derivatives

for x ≥ 0 and x < 0. Let us then modify F (x, y), defining

Fk(x, y) =

(x, (x+ fk(x))g(y/x)) if x ̸= 0

(x, y) if x = 0.
(5.3)

Then Fk is easily seen to be continuous along x = 0, and by similar arguments to those

applied to F , we see that Fk preserves Ck curves through the origin, but not Ck+1

curves. As an explicit example, we can take a Ck+1 curve which is equal to y = mx

near 0 such that m ∈ [1/2, 2]. Then Fk(x, y) = (x, xg(m)) + (0, fk(x)g(m)). The second

term is not Ck+1, and so not all Ck+1 curves are preserved by Fk. We can then apply a

bump function and a stereographic projection to get an analogous map F̃k on S2.

As a consequence of this proposition, each Sk is not isomorphic to S l for any finite

l ̸= k; graphs with differing automorphism groups cannot be isomorphic. Furthermore

S∞ is not isomorphic to any Sk for finite k, as each F̃k is in Autk(S2) but not Aut∞(S2).
From this and the earlier sections distinguishing our different intersection graphs of S2,
we see that no pair of C2, J , S∞ or Sk are isomorphic as graphs for any k ≥ 1.
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Chapter 6

On region graphs

Region graphs provide a novel and interesting method of construction for a graph. We

investigate the properties of region graphs on different classes of curves on the 2-sphere.

Throughout we assume that all such graphs are finite, meaning that collections of curves

are finite, and no two curves intersect infinitely many times. We classify some simple

region graphs on collections of general curves which serves to demonstrate their incredible

complexity. Thereafter we focus on region graphs of circles and demonstrate that this

is a more tractable problem. When we discuss region graphs on C2, we rely on the fact

that every chord in C2 as defined in Chapter 2 defines a unique circle embedded in S2.

6.1 Motivating the study of region graphs

Recall that region graphs are defined by “adding” removed curves back into the inter-

section graph of some class of curves on S2. In the geometric sense, this corresponds to

taking a collection of closed curves Γ = {γi} with i ∈ I and taking a vertex for every

topological component of S2\Γ. Now remove each γj with replacement and add edges

between all pairs of topological components which have merged. Repeat this for every

element of Γ, recalling that the graph should remain simple. The resulting graph is the

region graph RΓ.

We demonstrated in Lemma 3.4 that each automorphism of the larger intersection

graph induces an automorphism of the region graph. It is thus useful to study region

graphs as invariants of this action.

Region graphs are also interesting from a purely graph-theoretic perspective; we will

see definite structure within these graphs, especially within those on circular curves. We

show several interesting facts about region graphs, demonstrating that not all graphs
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are region graphs, and classifying certain simpler classes of region graphs. Furthermore,

it shall be seen that there are ways to iteratively construct region graphs of C2, which is

an unexpected result.

6.2 Necessary conditions for adjacency in region graphs

As we will later see, region graphs may be extremely complicated. It is therefore helpful

to understand their structure. To do so, we introduce a necessary condition for two

vertices to be adjacent in a region graph.

6.2.1 Codes

Suppose we have a finite collection of r distinct curves {γi}i∈[1,r]. Every vertex of a

region graph corresponds to a distinct topological component of S2. We recall that the

interior of a curve may be chosen arbitrarily on the 2-sphere. Make such a choice for all

curves in the collection. Then every region can be identified by an r-digit binary number.

Such a code looks like 1001 . . . 0110; this particular code tells us that the region is in the

interior of γ1, the exterior of γ2 and so on. In particular, if two regions’ codes differ at

n digits, then they do so in all choices of interior; exchanging the interior and exterior

of γj corresponds to flipping the jth digit of every code. Different regions may have the

same code, but for two regions to merge, we must be able to make their codes the same

by removing a single curve. Removing the curve γj corresponds to deleting the jth index

of every vertex’s code. So a necessary condition for two vertices being adjacent is that

their codes differ in at most one index.

6.2.2 Codes are not sufficient

We have shown that two regions are adjacent only if their codes differ by at most one

digit. The converse is false, as it is possible to have two regions with the same code that

are not adjacent, see Figure 6.1a.

In Figure 6.1a, the two hatched regions have the same binary code. To see this,

suppose that this arrangement of curves is contained in a small neighbourhood on S2

homeomorphic to R2. Then choose interiors as for Jordan curves on the plane. Let us

call the purple curve γ1, the blue γ2, the green γ3 and the red γ4; then the hatched

regions have code 1100. As shown above this implies they have the same code for any

choice of interiors. We demonstrate that they cannot be adjacent in the region graph on

the four curves. If we remove the red curve, then they are still separated by the green
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(a) Example of two non-adjacent regions
with the same code

(b) Example of two non-adjacent regions with
the same code for curves in C2

Figure 6.1: Arrangements with non-adjacent regions that share a code.

curve and vice versa. If we remove the purple curve, the two regions are still separated

by the red and green curves. If we remove the blue curve, then the two regions are

contained in two separate regions, bounded by the green and purple curves. So we have

demonstrated that no single curve can be removed to merge the two hatched regions.

One notices that we have used non-circular curves in Figure 6.1a, and so the question

arises as to whether we can run into the same problem using only circles on S2. The

answer is yes, by considering the arrangement of circles on S2 in Figure 6.1b. Form an

incident chain of circles around an equator. That is to say, we have a sequence of n

circles (Cn) around the equator such that Ci ∩ Ci+1 is a singleton with i mod n, and

all other pairwise intersections are empty. Then duplicate this sequence and shift it so

that the centre of each circle in the duplicate sequence is an incident point in the initial

sequence. Now take a larger circle across the equator. Then there are two regions within

the larger circle with same code.

In Figure 6.1b the red and green circles represent the previously described sequences

on an equator, and the hatched regions have the same code but are not adjacent in the

corresponding region graph. If we remove a single red or green circle then the hatched

regions are still separated by the chain of the opposite colour. If we remove the blue

circle, then both chains still separate the hatched regions.
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6.3 Region graphs on J

We begin our results by analysing region graphs on simple closed curves on S2, as in

Chapter 4. In particular, we classify all region graphs on two curves, and discuss a few

graph classes which are contained in the class of region graphs on a finite number of

closed curves. A finite collection of curves corresponds to a finite induced subgraph of

J .

6.3.1 On two curves

Throughout this subsection, we analyse the region graphs of two curves γ, λ ∈ J . We

denote the region graph of two curves that are incident at n points and m arcs, and

intersect transversally at 2k points Rn+m,k. All such incidences and intersections must

be disjoint, otherwise we have a self-intersection. See Lemma 4.10. It will become clear

that on general curves, region graphs may be incredibly complicated, and so we only

prove results in a few particular cases.

In order to classify Rn+m,k, we need to introduce the join of two graphs. Given

G = (V1, E1) and H = (V2, E2), G×H is the graph with vertex set V1∪V2 with all edges

in E1 ∪ E2 and all vertices of G adjacent to all vertices of H. Furthermore, we denote

by G+H the disjoint union of two graphs, the graph with vertex set V (G)∪ V (H) and

edge set E(G) ∪ E(H). We denote the disjoint union of n identical graphs G as nG

Lemma 6.1. We classify all finite region graphs on two curves.

• R0,0 = P3

• R0,k = 2Kk × 2K1 for k > 0

• Rn+m,0 = Kn+m × 2K1, for n+m > 0

• Rn+m,k = (Ka +Kb)× 2K1 for n+m > 0 and k > 0 where a, b ∈ N+ and depends

on the cyclic ordering of the incidences and transverse intersections.

Proof. For the sake of illustration, we orientate our two curves anti-clockwise, as in

Figure 6.2. The steps we follow below hold no matter the orientation of our two curves, in

general replace “right” with “left” and vice versa for an individual curve if the orientation

of that curve is flipped.

If n = m = k = 0, then we have two disjoint curves, and a quick check shows the

corresponding region graph is the path on three vertices, P3. Throughout the rest of the

proof, we use Lemma 4.3 repeatedly to count the number of regions.
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Figure 6.2: Anticlockwise orientation of curves, in this case k = 4, n = 1 and m = 0.

We now tackle the case for k = 0. There are exactly n + m regions to the right of

both curves. Upon removing either curve, these regions all merge, and hence form a

clique Kn+m within the region graph. There are then two other regions, one to the left

of γ and the right of λ and vice versa. Call these two regions G and L. Upon removing

γ, G merges with those regions to the right of both curves, and so is adjacent to all of

them in the region graph. Similarly, L merges with all these regions upon removal of λ.

However, neither removal merges G and L. Furthermore, there are no regions to the left

of both curves. Hence we see that the region graph is Kn+m × 2K1 as claimed.

If n+m = 0 < k then by similar reasoning to the previous case all k regions to the

right of both curves form a clique, and all k regions to the left of both curves form a

clique. We find regions G and L as before, each to the right of one curve and the left

of the other. We find that upon removal of γ, G merges with all regions to the right

of both curves, and L merges with all regions to the left of both curves. The opposite

is true upon removal of λ. Again G is not adjacent to L, and no region to the right of

both curves can be merged with a region to the left of both. Hence we have two separate

cliques of size k, and two vertices adjacent to all vertices in both cliques, but not each

other. This is exactly 2Kk × 2K1.

For the final case, we may enumerate the transverse intersection points within the

natural cyclic ordering of the intersections as in Lemma 4.10. For each transverse inter-
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section point i, we say the number of incident points and arcs occurring between i and

i+1 in the cyclic ordering is ni andmi. We find there are exactly r :=
∑

even j(nj+mj+1)

regions to one side of both curves and s :=
∑

odd j(nj + mj + 1) to the other side of

both. By this we mean we have r regions either to the left of both curves or to the

right of both and s regions on the opposite side of both curves. These form two cliques

of size r and s which are disjoint. The exact values of r and l depend on the cyclic

ordering of the incidences and intersections; for example, if all incidences are between

two consecutive transverse intersection points, then we get two cliques of size n+m+ k

and k. Finally, we again have a region G which is to the left of γ and the right of λ and

vice versa for L. Again, both G and L may be merged with both cliques, but not with

each other. Similarly, no region in either clique can be merged with a region of another

clique. Hence we find the region graph is (Kr +Ks)× 2K1.

In fact, the statement of Lemma 6.1 follows from the properties of codes described

in §6.2.1. In the case where we have two curves, each code has two digits. Therefore

possible codes are 00, 01, 10 and 11. Removing either curve then deletes the first or

second indices. Deleting the first or second clearly merges all regions with code 00 and

merges all regions with code 11, as their resulting code is 0 or 1. Removing the first

curve then shortens the codes 01 and 10 to 1 and 0, and the opposite is true if we remove

the second curve. Hence we have demonstrated that these two regions can merge with

all regions of code 00 or 11. As regions whose codes differ at more than one digit cannot

be adjacent, 10 and 01 are not adjacent and so we are done.

We now show a few properties of the graphs Rn+m,k. The first result on planarity is

not surprising, as Lemma 6.1 demonstrates that large cliques may develop for n+m+k

small. Also note the following:

A graph G is planar on the plane R2 if and only if it can be embedded on S2

such that no two edges cross.

This follows via applying a stereographic projection to a planar graph’s embedding

in R2. A stereographic projection is Möbius, as we showed in Chapter 2 and so maps

non-crossing edges to non-crossing edges, and the meeting point of two edges (a vertex)

to a meeting point. This justifies the use of the term planar for graphs embedded in S2.

Lemma 6.2. Rn+m,k is planar if and only if n+m+ k < 3.

Proof. A graph is planar if and only if it contains no K5-minor or K3,3-minor, by Kura-

towski’s Theorem. Let us first tackle the forwards direction.
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If k = 0, then Kn+m × 2K1 only contains a K5 minor if n+m ≥ 3, and clearly can

contain no K3,3 minor if n+m < 3 as this provides too few vertices.

If k ≥ 1 and n+m = 0 then by Lemma 6.1, we have two disjoint cliques Kk and Kk.

To find a K5 minor, contract all vertices of one Kk to the vertex representing G. This

results in a clique of size c := k + 2, thus c ≥ 5 implies k + 2 ≥ 5 implies n+m+ k ≥ 3

as required.

If instead k ≥ 1 and n + m > 0, then by Lemma 6.1 we have two disjoint cliques

of size Kl and Kr, where l + r = n +m + 2k. Contract the clique Kx to the vertex G,

where x = min{r, l}, which results in a clique of size c, where c = max{r, l}+2. Observe

that c+ x = r+ l+ 2 = n+m+ 2k+ 2. Then c ≥ 5 implies n+m+ 2k+ 2 ≥ 5 implies

n +m + 2k ≥ 3. It only remains to observe that n +m > 0 and k ≥ 1 together imply

n+m+ 2k ≥ 3 and so all such graphs must contain a K5 minor.

For the backwards implication, a manual check shows that R0,0, R0,1, R0,2, R1,0, R1,1

and R2,0 are all planar.

We now prove a perhaps slightly surprising result.

Lemma 6.3. Rn+m,k is perfect for all n,m, k.

Proof. Note that cliques are perfect, and the disjoint union of two cliques is also perfect.

For the case n = m = k = 0, the region graph is P3, a brief check shows it is

perfect. We now assume n + m > 0 or k > 0. We therefore have a clique of size r,

a clique of size l, and two vertices joined to these two cliques. Let us label vertices

based on our choice of orientation. All of the following results hold for other labellings

of vertices. We label vertices in the Kl clique as ll, those in the Kr clique as rr and

then label G as lr and L as rl. These labellings are simply the side of γ and λ that each

vertex’s region is located on, as in the proof of Lemma 6.1. Our task is to show that

χ(Rn+m,k) = ω(Rn+m,k), and that the same equality holds for all induced subgraphs I

of Rn+m,k. We initially show the equality holds for Rn+m,k. We need r colours to colour

the Kr, and l colours for the Kl. We then need two extra colours for G and L, as both

are adjacent to all vertices in the l and r cliques. Hence χ(Rn+m,k) = max{r, l} + 2.

Furthermore, ω(Rn+m,k) = max{r, l}+ 2. This is because both Kr and Kl form cliques

of size r + 2 and l + 2 with G and L. Suppose without loss of generality that r > l.

Then adding another vertex to the r + 2 clique implies we must add a vertex from the

Kl clique. But such a vertex is not adjacent to any vertex of the Kr clique, and so we

have indeed found the clique number of Rn+m,k. We now consider cases for the labelled

vertices of induced subgraphs I. Vertices can be labelled:
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(i) Entirely rr or entirely ll - in which case I is perfect as a clique

(ii) Either lr or rl - in which case I is perfect as K1 or 2K1

(iii) rr and ll - and so I is a disjoint union of cliques, and is perfect

(iv) Both rr and rl or lr - then I is a clique and is perfect

(v) Both ll and rl or lr - same as case (iv)

(vi) A combination of all three - so we choose a vertices labelled rr, b vertices labelled

ll and p ∈ {1, 2} vertices labelled lr or rl. Following the logic for Rn+m,k above,

χ(I) = max{a, b}+ p and ω(I) = max{a, b}+ p. Hence I is perfect.

We have shown that χ(I) = ω(I) for all induced subgraphs I of Rn+m,k, and so Rn+m,k

is perfect.

It is true in fact that the join of two perfect graphs is perfect, and so Lemma 6.3 is

not surprising, given the structure of such graphs. We chose not to rely on this property

of the join to help demonstrate the structure of induced subgraphs of Rn+m,k.

6.3.2 On more than two curves

We now focus on results involving region graphs on more than two curves, R{γi}. We

begin by demonstrating several well-known graphs which are themselves region graphs.

Lemma 6.4. A path on n vertices is a region graph.

Proof. Take n− 1 nested, disjoint curves.

In fact, we can show a stronger result.

Lemma 6.5. Any finite tree is a region graph.

Proof. Given a tree, we may assume it is rooted. We construct the tree iteratively.

Begin with an empty set of curves, which has region graph K1, which we shall assume

corresponds to the root. For each child of the root, take a disjoint curve with no nesting.

The resulting region graph is the root with its children. At the kth step, for a vertex

v added in the previous step, let C(v) denote the number of children of v in the given

tree. Add C(v) disjoint non-nested curves to the region corresponding to v. Repeat this

for each such vertex. The region graph resulting from this process is exactly the given

tree.
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All paths are trees, and so this proof suffices to show Lemma 6.4. In fact, this tells

us that there are at least as many planar region graphs on n curves as the number of

unlabelled trees on n vertices [34].

Lemma 6.6. Every cycle C2l where l ∈ N≥0 is a region graph.

Proof. Take l circles such that pairwise intersections are all equal to {x, y}. That is to

say, all circles in the collection should intersect each other at the same two points, and

nowhere else. See Figure 6.3 for an example for C6.

Figure 6.3: Arrangement of circles with region graph C6

Lemma 6.7. The only complete region graphs are K1 and K2.

Proof. Firstly, K1 = R∅. Secondly, K2 = R{γ}, the region graph of a single curve. Now

suppose that v ≥ 3 and Kv is a region graph on r curves, so in particular we have v

regions. Then r ≤ v − 1 as r curves divide S2 into at least r + 1 regions. We see that

r = 1 is impossible, as the only region graph on a single curve is P2. We see by Lemma

6.1 that r = 2 is also impossible. Now suppose 3 ≤ r ≤ v − 1, and our curves are

{γ1, γ2, . . . , γr}. Then the fact every region is adjacent to every other implies that the

code for a given region can differ from every other region’s code in at most one place.

Suppose we take a region with code x1x2 . . . xr−1xr where xi ∈ {0, 1}. Then without

loss of generality, assume the code for every other region is of the form yx2 . . . xr−1xr,

where x1 ̸= y ∈ {0, 1}. But this implies every region is on the same side of every curve
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γ2, . . . , γr. But this is impossible, every curve γi divides S2 into exactly two non-empty

regions, and so we must have at least two regions which differ at a given index in their

code. Hence we have a contradiction, and so Kv cannot be a region graph for a collection

of r ≤ v − 1 curves, and so cannot be a region graph at all. Ergo, we have shown the

only complete region graphs on Jordan curves embedded in S2 are K1 and K2.

Note that for the above proof it is not necessary to classify all region graphs Rn+m,k

on two curves, or even those for one curve. Every region has a code of 1 or 2 digits in

either case, and it is guaranteed that there are at least two regions which differ in the

ith index by the Jordan curve theorem.

Lemma 6.7 implies that region graphs do not form a hereditary or minor-closed graph

class. For example, R3,0 contains K3 as an induced subgraph and as a minor, but K3 is

not a region graph.

In the examples of §6.2.2 we used at least four curves to construct an arrangement

containing vertices with the same code that are not adjacent in the corresponding region

graph. Are there any ways to construct non-adjacent vertices with the same code for

three or fewer curves? For three, the answer is yes as Figure 6.4 demonstrates. For two

and below, the answer is no, as Lemma 6.8 shows.

Figure 6.4: An arrangement of three curves such that the two hatched regions are non-
adjacent and have the same code.
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Lemma 6.8. A region graph on r curves may contain non-adjacent vertices with the

same code if and only if r ≥ 3.

Proof. We have already seen examples for r = 3, 4. To construct a region graph on

r > 4 vertices with non-adjacent vertices with the same code, add r − 3 disjoint circles

intersecting no other curves into a single region of the arrangement in Figure 6.4. This

corresponds to adding a tree sharing the vertex of this region. This cannot connect the

two non-adjacent regions with the same code, and so we have a graph on r curves with

a pair of such regions.

We now tackle the forwards implication. If r = 0, then we have a single region and

so the result holds trivially. If r = 1, then we have exactly two regions which necessarily

differ in their codes. If r = 2, then we can have many regions with the same code, but as

demonstrated in Lemma 6.1, all vertices with the same codes are contained in a clique

and so there are no non-adjacent vertices with the same code.

We end this section by demonstrating that a region graph on J need not be con-

nected.

Lemma 6.9. There are disconnected region graphs on J .

Proof. For a region graph on a class of curves to have multiple connected components, we

must have some “double enclosing”. By this, we mean that some curve in our collection

must lie along at least one other curve at all points, see Figure 6.5a. This ensures that the

boundary of some region is “doubled up”, in the sense that every point of the boundary

of the region is contained in at least two distinct curves. Thus removing any single curve

cannot merge the region with any other. In a similar vein we may have some arbitrary

finite collection of curves contained entirely within a region which is double enclosed.

This then demonstrates we may have non-trivial connected components in such a region

graph.

Let us now show that double enclosure is necessary for disconnectedness of a region

graph. Let us assume that our region graph has an isolated vertex. Suppose this region

is not double enclosed. Then there must be some portion of the boundary of the region

that lies on only a single curve. Removing this curve necessarily merges the region

with another, contradicting our assumption that the region is isolated. Thus “double

enclosure” is necessary and sufficient for a region to be isolated in a region graph.

Furthermore, as we assume our region graph is on a finite collection of curves, we must

have some arc-incidence along the boundary; we cannot double up an entire boundary
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just via point-incidence using only finitely many curves with finitely many intersections.

As a corollary of Lemma 6.9, we can determine that all finite forests are indeed region

graphs.

6.4 Region graphs on C2

As seen in the previous section, region graphs on general curves are in general extremely

complex, and the task of characterising them seems intractable. However, if we instead

focus on circles on S2, there is much we can say about region graphs. To begin with, we

must justify what is meant by a region graph on C2, whose vertices are chords rather than

curves. We recall that C2 is isomorphic to the intersection graph of circles embedded

in S2. Every chord defines a unique embedded circle and vice versa, and hence the

intersection graph of circles embedded on S2 has all of the properties proven in Chapter

2. In this way we justify our terminology around region graphs on C2. Two circles which

are tangent shall be referred to as incident as in Chapter 2 and two circles intersecting at

two distinct points overlap. A finite collection of circles corresponds to a finite induced

subgraph of C2.

We begin with a simple lemma, which demonstrates a crucial difference between

region graphs on J and those on C2.

Lemma 6.10. Every region graph on C2 is connected.

Proof. By Lemma 6.9, we see that to have double enclosure of a region, we must have

arc-incidence along its boundary. Therefore, if our curves are all circles, then we must

have arc-incident circles in our collection. But circles that agree along an arc must

be the same, contradicting our assumption that our region graph is on distinct curves.

Hence such an arrangement is impossible on C2, and so all such region graphs must be

connected.

Remark We can put bounds on the number of vertices of a region graph of a collection

of r circles. In particular, a lower bound is r+1 which can be achieved if all r circles are

disjoint. The upper bound is r2 − r + 2 which may be achieved if the r circles pairwise

overlap and there are no multiple intersection points.

This implies C5 is not a region graph on any number of circles by the following. For

r < 3 the upper bound on the number of vertices is less than five. If r > 4 the lower
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(a) Four black rectangular curves, and
an orientated red curve which lies en-
tirely along the boundaries of the other
four. The region to the left of the red
curve cannot be merged with any other
region by removing a single curve, and
so is isolated in the corresponding re-
gion graph.

(b) Example of a non-perfect region graph; the green
vertices induce a C5, so by the Strong Perfect Graph
theorem, this region graph is not perfect.

Figure 6.5

bound on the number of vertices is greater than five. We will see in our classification of

region graphs on three circles in §6.4.1 that C5 is not a possible region graph - see Figure

6.6. The only way for four circles to produce five regions is if all existing intersections are

incidences. The only region graphs of such arrangements are the trees with five vertices,

P5, chair and K1,4.

Remark Lemma 6.3 begs the question of whether all region graphs are perfect. This is

not true, consider Figure 6.5b formed of circles in C2.

6.4.1 Region graphs of small collections of circles

To classify region graphs on circles, the most obvious method is to find all region graphs

on collections of r circles, with any pattern of overlaps. This is possible for small r, but

quickly becomes intractable.

Let us list the region graphs of up to three circles.

Zero circles: The only region graph on the empty collection is the single vertex graph,

K1.

One circle: The only region graph on a single circle is K2.

Two circles: There are exactly two region graphs on two circles: the path P3, and the

4-cycle C4.
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Three circles: Up to isomorphism, there are eleven region graphs on three circles.

These are shown in Figure 6.6.

Figure 6.6: Region graphs on three circles.

In order to classify the region graphs on r circles, it is necessary to enumerate all

possible arrangements of r circles on S2 up to Möbius transformation. That is to say, two

arrangements are considered the same if there is a Möbius transformation which sends

one to the other. This is not a trivial task, and so we would seek to lessen the number of

configurations that must be calculated; this will be the focus of the next section. There

is one arrangement for a single circle, three for a pair, and nineteen for three circles. See

Figure A.1 for an illustration of those arrangements of three circles.

Note that we must allow tangency (incidence) and multiple intersection points in our

configurations. It is then a simple computational task to find all non-isomorphic region

graphs on such arrangements. In fact, the study of region graphs on circles lends itself

to computational methods. Several of the results in this chapter were inspired by the

analysis of region graphs of small (< 15) randomly generated collections of circles. We

have provided the code used to generate these collections, as well as to calculate the

corresponding region graph, in Appendix C. Most analysis of the graphs was done via

SageMath.

Given that there are nineteen arrangements of three circles on the sphere, and only
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eleven region graphs, this implies that region graphs do not encode all topological infor-

mation of a corresponding arrangement of circles.

6.4.2 Region graphs on collections with few pairwise intersections

In §6.4.1 it is clear that for r > 3 circles, the number of arrangements that must be

analysed quickly grows. We can instead focus on finite collections of arbitrary size,

where individual circles cannot intersect more than some number of other circles I. This

approach lessens the number of arrangements that must be calculated. We say the

degree of a circle in a collection is the number of other circles it intersects. Recall that

we distinguish two arrangements only up to Möbius transformation.

Our aim in this section is to classify the region graphs on collections of circles with

maximum degree at most three. We also demonstrate an inductive method to construct

a region graph on a collection with maximum degree k.

Let us first define some terminology. A block in a graph G is a maximal biconnected

subgraph of G. A biconnected graph is a connected graph such that deleting any single

vertex does not disconnect it. A chain of circles is a finite sequence of circles such

that consecutive circles may intersect, either incidentally or by overlapping, and no

other pairwise intersections occur. The length of a chain is the number of circles it

contains. An incident chain is a chain in which the only intersections are incident, and

an overlapping chain is a chain in which all intersections are overlaps. See Figure 6.7 for

some examples. A loop is a chain in which the first and last circles may also intersect;

the same terminology used for chains also applies to loops. We also insist that loops are

of length four or greater.

Figure 6.7: An overlapping chain of length six (left) and an incident chain of length five
(right). A chain could also contain both overlaps and incidences.

We denote the class of region graphs for finite collections of circles on S2 where a

given circle can intersect at most I others CircleI . It is then clear that for I = k,

Circle0 ⊂ Circle1 ⊂ . . . Circlek−1 ⊂ Circlek ⊂ Circlek+1 ⊂ . . . .
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Collections of circles with I = 0

The induced subgraph of C2 of such a collection of circles is an independent set. The

only region graphs on r disjoint (as I = 0) circles are the trees on r vertices, which

can be seen as follows. We have only a single operation for modifying a given collection

of disjoint circles. This operation is to add another disjoint circle. Such a circle may

contain some portion of the given collection in both sides. Within the region graph,

this corresponds to splitting the articulation vertex connecting the collections on either

side in two, such that each split vertex is the root of the region graphs of the collections

contained in either side. The two vertices should be adjacent to one another. Repeating

this iteratively we can obtain any tree. Hence we see that Circle0 is exactly the class of

trees.

We also note that the trees are those connected graphs in which all blocks are single

edges.

Collections of circles with I = 1

In this case, given a circle, it can either be disjoint from all others, be incident to a

single other circle, or overlap a single other circle. The induced subgraph of C2 of such

an arrangement is a graph with maximum degree one. Let us start with a collection

of disjoint circles. The region graph of such an arrangement is a tree, as shown in the

previous section. We iteratively modify the starting collection where the possible ways

to add a circle are:

(i) Adding a disjoint circle to a region. This is an operation already available in the

case I = 0. See Step 6 of Figure 6.8 for an example.

(ii) Adding a circle to a region, incident to a single circle on the boundary of this

region. Within the region graph, this turns a K2 into a P3, which is equivalent

to adding a pendant vertex. So in fact this is equivalent to operation (i) in its

modification of the region graph. We could achieve the same change to the region

graph by adding a disjoint circle to the same region with the same circles in each

hemisphere. See Step 3 of Figure 6.8 for an example.

(iii) Adding a circle that overlaps a single existing member of the collection. Such a

circle can only intersect two regions, the regions bounded by the circle it overlaps.

Within the region graph, this corresponds to expanding an edge xy into a 4-cycle

by adding two new vertices u, v and the edges ux, uv, vy. See Steps 5, 7 and 9 of

Figure 6.8 for examples.

73



Each of these is what we will call an addition operation or operation for short of

Circle1.

In general, for Circlek, all operations in classes Circlel with l < k are available,

but we also have new operations, allowing us to create circles of degree k, which are not

available in lower classes; we will call such operations semi-saturating. A semi-saturating

operation takes a collection which has maximum degree at most k − 1, and adds a new

circle in such a way that either the added circle or one of its neighbours is of degree k.

We term a semi-saturating operation such that the added circle and all of its neighbours

are of degree k saturating.

These may be interpreted as modifications of the intersection graph of a collection

of circles. It must be kept in mind that the intersection graph does not encode all topo-

logical information about an arrangement of circles; so to recover the region graph we

must keep track of the collection of circles itself. Within the intersection graph, a semi-

saturating operation of order k consists of adding a new vertex v and at most k edges

incident to v, such that at least one vertex incident to a newly added edge is of degree k.

A saturating operation is then the same operation, but with the stronger requirement

that all vertices incident to the added edges are of degree k.

Before characterising the graphs in Circle1 and determining the structure of graphs

in Circle2, let us first demonstrate the utility of semi-saturating operations.

6.4.3 An algorithm for recursively constructing a region graph in Circlek

Given our definitions for semi-saturating and saturating operations, it is natural to ask

if all graphs in Circlek can be obtained from a graph in Circlek−1 using just semi-

saturating operations or saturating operations. We first show this result is true of semi-

saturating operations.

Lemma 6.11. Any G ∈ Circlek can be obtained from a graph G′ ∈ Circlek−1 through

only semi-saturating operations.

Proof. Suppose we have a graph G ∈ Circlek and a corresponding arrangement of circles.

We work in the intersection graph, H, of the collection of circles by a recursive series of

vertex deletions.

Firstly, note that ∆(H) ≤ k as a result of the corresponding collection of circles.

At a given step delete a vertex of degree k, which corresponds to removing a circle of

degree k from the starting collection. Create a list L of these deletions, appending each

removal to the end of this list. Such a deletion reduces the degree of any neighbouring
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vertices by one. Continue to do so until there are no vertices of degree k left, so all

remaining vertices are of degree at most k − 1. This corresponds to a collection of

circles of maximum degree k − 1, and so the associated region graph G′ is a member

of Circlek−1. Also note that this process will terminate at a finite step, as our initial

collection is finite by assumption.

Now we reverse this process, by reading L right to left and adding in the required

vertices and edges step by step. Each such addition is a semi-saturating operation by

definition, as we are adding in a circle of degree k. We do indeed recover G in its entirety

through these additions. So this demonstrates that G may be recovered from G′ by a

series of semi-saturating operations of Circlek.

The above lemma demonstrates that the only “meaningful” operations of Circlek

are its semi-saturating operations. When applied to Circle1, this means we can start

with a tree, and add only incident or overlapping circles to obtain any member.

As may be expected, we can determine an even stronger result from Lemma 6.11.

Corollary 6.1. Given G ∈ Circlek, we may obtain G by starting from an empty col-

lection of circles, and applying semi-saturating operations in Circle0, then Circle1, ...

and then in Circlek in that order.

Proof. We follow a proof by induction. For k = 0, we have already shown that every tree

can be obtained from the single vertex graph by the single operation - which is semi-

saturating - of Circle0. Now assume the inductive hypothesis holds for all graphs in

Circlek−1. Then take a graph G ∈ Circlek, and a corresponding arrangement of circles.

Follow the proof of Lemma 6.11 to remove circles of degree k. Then the maximum degree

of any circle in the resulting arrangement is k−1, and so the corresponding region graph

H is in Circlek−1. Then add the removed circles back in to obtain G from H by only

semi-saturating operations of Circlek. Thus the statement of the corollary holds.

The same is not true of saturating operations. A chain of length greater than five, for

example, necessarily requires semi-saturating but not saturating operations of Circle2

to construct.

Let us make some observations that are a consequence of Lemma 6.11 and Corollary

6.1.

Observation 6.1 Any sequence of operations (whether non-saturating, semi- or satu-

rating) that results in the same collection of circles, up to Möbius transformation, will
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give us the same region graph. This is because every collection of circles has a unique

region graph - although each region graph does not necessarily have a unique collection

of circles, as Figure 6.6 demonstrates. Furthermore, given a particular sequence of op-

erations, we may permute the Circle0 operations, then permute the Circle1 operations

and so on. At no point can we create a circle with degree greater than l by performing

the Circlel operations in a different order.

Observation 6.2 To get G ∈ Circlek we can start from the single vertex graph. As we

perform operations in Circlel, l < k, we may label the added edges. In particular, those

edges corresponding to adjacency to a region at least partially bounded by a circle of

degree l should be labelled. Then labelled edges cannot again be modified, until we start

applying operations from Circlel+1; this would require adding a circle exceeding degree

l. As our operations are semi-saturating, we may not need to label all edges created

in such an operation. If instead an operation is saturating, then all new edges must be

labelled.

Then assuming semi-saturating operations for l < k are known, if we are able to

find all such operations of Circlek, we may construct all associated region graphs. The

task of finding all such operations is non-trivial. One must determine all of the distinct

arrangements of circles up to Möbius transformation of maximum degree k that achieve

this maximum. This is, however, a significant reduction in the number of arrangements

that must be determined than in §6.4.1.

Due to Lemma 6.11, we see that graphs in Circle1 have the following characterisation.

A graph G is in Circle1 if and only if it is connected and all cycles in G are

of length four, and any pair of cycles shares at most one vertex.

This is exactly the class of cactus graphs containing only 4-cycles and 2-cycles [35].

Equivalently, these are the connected graphs whose blocks are either an edge or C4. All

such graphs are planar and perfect.

Based on Observation 6.2, we can colour the edges of an added 4-cycle, and colour

the edges of a P3 resulting from adding an incident circle. Adding a disjoint circle

corresponds to adding an uncoloured edge. Coloured edges cannot then be enlarged

to 4-cycles. We can clearly add an uncoloured edge adjacent to any given vertex, by

inserting a disjoint circle in the corresponding region. See Figure 6.8 for an example of

building up a graph in Circle1.
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Figure 6.8: In this example we build a graph in Circle1 from a single vertex via operations
(i), (ii) and (iii). We colour edges of 4-cycles blue and the edges corresponding to an
incident pair green. Edges corresponding to uncoloured edges are red. It is clear from
Lemma 6.11 that we could reach step 9 from a different starting tree in only 4 operations.

Collections of circles with I = 2

By analysing all semi-saturating operations of Circle2, we can determine the structure

of all graphs in this class. We list all such operations in Appendix B as there are a large

number of possible operations. Before characterising the graphs of Circle2, let us first

define Loop ⊊ Circle2, the class containing all region graphs of loops.

Definition 6.1 A graph G ∈ Loop is a graph that may constructed in the following

manner:

1. Begin by taking a disjoint union of isolated vertices and paths of odd length,

P2k+1 = x1x2 . . . x2k+1.

2. Add a vertex adjacent to all isolated vertices and alternating vertices x1, x3, . . . x2k+1

of each path. The resulting graph is the region graph of a chain of circles, see Figure
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6.9. Let us call this added vertex v.

3. Add a new vertex v′ such that N(v′) = N(v) ∪ {v}.

The result is the region graph of a loop. The odd length paths result in 4-cycles

which represent the overlapping circles, while the single vertices represent the incident

circles. See Figure 6.9 for an example.

(a) A region graph of a chain. The
addition of the purple circle is a satu-
rating operation.

(b) A region graph of a loop. The addition of the
purple circle is a saturating operation.

Figure 6.9: In both cases, we may start with the black circles and add the purple circle.
New edges and vertices created by this operation are blue and purple respectively.

Also note that Loop ⊂ Circle2, but Loop∩Circle1 = ∅ and that all graphs in Loop

are biconnected. Furthermore, within the region graph of a chain, we get sequences of

4-cycles, with each pair of consecutive 4-cycles sharing a single edge. These correspond

to overlapping sequences of circles within the chain. Such a graph is biconnected, and

may be expressed as an odd length path with a single vertex adjacent to every other

vertex of the path, including the end vertices. Given this, we can now characterise those

graphs in Circle2.

Lemma 6.12. A graph G is in Circle2 if and only if it is connected and its blocks are:

(i) K2 or C4

(ii) One of the graphs listed in Figure 6.6 - excluding P4, K1,3 and 4-pan as these are

not biconnected.

(iii) An odd length path x1x2 . . . x2k+1 with a vertex adjacent to x1, x3 . . . x2k+1.
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(iv) A graph in Loop.

Proof. The forward direction follows from the list of semi-saturating operations of Circle2

in Appendix B, and that all graphs in (i), (ii), (iii) and (iv) are biconnected. No region

graph of a non-overlapping chain is biconnected; we may remove the vertex correspond-

ing to Step 2 of Definition 6.1.

For the backward direction suppose we have a graph with such blocks. Then every

such block corresponds exactly to an arrangement of circles with maximum degree two.

Where two blocks share a vertex, one arrangement of circles must be contained in the

region corresponding to the shared vertex. By these deductions we may then construct

an arrangement of circles with region graph exactly the graph we started with.
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Chapter 7

Concluding remarks

We began this dissertation with a short overview of the higher-dimensional analogues

of Möbius transformations, and demonstrated several useful properties of such maps.

We then proceeded to show their relationship to the d-sphere graph in answering Ques-

tion 1. Subsequently, we were able to recover the entire automorphism group of S2 by

generalising the allowable curves in our intersection graph, and investigated those home-

omorphisms of S2 that preserve Ck Jordan curves. We ended by analysing the properties

of region graphs and explored several more tractable classes of region graphs of circular

curves. In this conclusion, we will discuss further work that may be done in these areas.

To begin with, the topic of Möbius transformations is a well-studied area. In this way,

what we have demonstrated in the first chapter merely skims the surface. For example,

[8] and [9] both go into far more depth on the structure of the d-dimensional Möbius

group and its links to hyperbolic geometry. There is also much to be said on the links be-

tween Möbius transformations and conformal mappings - those functions that preserve

angles, which [9] focuses on. We also made a brief mention of Clifford algebras, and

would refer the reader to several papers on the links between Möbius transformations

and Clifford algebras [36][37][38].

In Chapter 3, we were able to answer Question 1. However, there are plenty of other

open questions concerning sphere graphs.

As an example, in [1], Georgakopoulos was able to demonstrate that CQ is a strongly

universal element for the class of countable circle graphs. In this case, a circle graph is

an induced subgraph of C and more generally, a d-sphere graph is an induced subgraph of

Cd. The graph CQ is the intersection graph of those chords whose endpoints are rational,
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where we identify S1 with [0, 1]. A graph U is strongly universal for a graph class D if

every G ∈ D is an induced subgraph of U . It is unknown whether there is a strongly

universal element for the class of countable d-sphere graphs for every d > 1.

Georgakopoulos has also shown that CQ is invariant under local complementation

- swapping the edges and non-edges in N(v) for some vertex v. An open question is

whether there are any non-empty, connected, countably infinite and vertex-transitive

graphs that are invariant under local complementation, which are not isomorphic to the

Rado graph or CQ. In particular, would a strongly universal element of the class of

d-sphere graphs for some d > 1 satisfy this property, thereby providing infinitely many

examples?

One could also determine whether there are any finite d-sphere graphs which are

invariant under local complementation.

Within Chapter 4 we were able to find a natural graph J such that Aut(J ) is iso-

morphic to Aut(S2). It seems likely a method of proof similar to ours should generalise

to higher dimensions. In particular, one could consider the intersection graph J d of the

continuous, injective maps γ : Sd−1 → Sd, in which case J = J 1. More care would need

to be taken around wild embeddings, such as the Alexander horned sphere.

It would then be another natural generalisation to consider the smooth Jordan curves

in higher dimensions. One could also analyse other classes of Jordan curves. For ex-

ample, in Lemma 6.10, we relied on the fact that two circular curves on S2 that agree

on an arc must be the same. One could then consider the real-analytic Jordan curves,

in which the same property holds. Rectifiable Jordan curves, which are those curves of

finite length, may also provide a fruitful path of exploration.

Within Chapter 6 we hope to have demonstrated some interesting results that arise

from this seemingly novel method of graph construction. There is much more work

that may be done on these graphs. For example, we were able to classify CircleI for

I = 0, 1, 2 by admissible blocks. Is it true that every such class CircleI admits such a

characterisation via admissible blocks? Furthermore, one may ask whether it is truly

necessary to calculate all suitable arrangements of circles up to Möbius transformation

to find these region graphs, or whether there exists some more tractable combinatorial

method to determine them. It seems likely that the case for I = 3 and perhaps for I = 4

could be solved through the first method computationally, but beyond this we expect a

different approach would be needed.

We also noted that region graphs do not encode all topological information of a
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collection of curves in general. There are several simple examples of collections of circles

with the same intersection graph and the same region graph, but which are topologically

distinct. Consider Figure 7.1 for example.

Figure 7.1: Topologically distinct arrangements of circles with the same intersection and
region graphs.

In both arrangements, the cyclic order of incidences around the large circle differ. It

is immediately clear that the intersection graphs are the same, and one can quickly verify

that the region graphs agree. This demonstrates that even the pair of the intersection

graph and the region graph does not encode the entire topology in general. Could one

find an invariant such as the region graph, that encodes all topological information about

a given set of curves? One potential candidate is a multigraph equivalent of the region

graph. Again, vertices correspond to topological components. Between each pair of

vertices, add edges each corresponding to a distinct sequence of curve removals that

merge the two regions. One could reverse the question, and ask if there is much to be

said about those arrangements whose topology region graphs do determine.
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Appendix A

Arrangements of circles

Figure A.1: The 19 arrangements of three circles on the 2-sphere up to Möbius trans-
formation
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Appendix B

Semi-saturating operations of

Circle2

We list all semi-saturating operations of Circle2. Within our demonstrative diagrams,

we consider an existing pair of circles, in black, and add a third purple circle. We then

show the change to the corresponding region graph, where any new edges are blue and

new vertices are purple. Figures B.1-B.4 demonstrate operations on a disjoint pair of

circles, which are all semi-saturating, except for two cases outlined in Figures 6.9a and

6.9b. Figures B.6-B.7 demonstrate operations on an incident pair. Finally, Figures B.8-

B.15 demonstrate operations on an overlapping pair. Note that in each case, there may

be another way of obtaining the same collection via a different sequence of operations.

As we remarked, this does not affect the resulting modification to the region graph.

a d b

c
c

a b

c

a d b

Figure B.1: Operation I: Add a circle incident to both, such that both original circles
are on the same side. This adds a pendant vertex to the region bounded by both circles,
turning a P3 into a K1,3 by adding a single vertex and a single edge. This is equivalent
to adding a single circle incident to an existing circle of degree one.
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a b

c

d

d

a

c

b a

c

b

Figure B.2: Operation II: Add a circle incident to both such that each is on a different
side. This turns a P3 into a P4 by splitting a vertex and adding an edge. This is
equivalent to adding a circle incident to an existing circle of degree one, on the opposite
side to its existing neighbour.

a b

c

d e

e

d
a

c

b a

c

b

Figure B.3: Operation III: Add a circle incident to one and overlapping the other. This
adds a 4-cycle to a single edge of the P3, by adding two vertices and three edges.

a b

c

d e f

f
e

d
a

c

b a

c

b

Figure B.4: Operation IV: Add a circle overlapping both. This turns a P3 into two
4-cycles sharing an edge, by adding three vertices and five edges.
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(a) An example of operation (iii) where
each disjoint circle is of degree one.
This diagram also demonstrates what
the region graph of a chain looks like, a
single vertex with runs of 4-cycles and
pendant vertices.

(b) Joining up the ends of a chain to form a loop
via operation (iii). Such an operation takes a region
graph as in Figure (a) and adds a new vertex corre-
sponding to a new entrapped region. Such a vertex
mirrors the upper vertex in Figure (a) and is adjacent
to it; removing any single circle from the loop merges
the entrapped and outer regions.

Figure B.5

a b

c

d

d

a

c

b a

c

b

Figure B.6: Operation V: Add a circle incident to both such that there is a triple point.
This operation turns a P3 into a P4, and so is analogous to operation (ii).
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a b

c
d

e

a

e
b

d

c

a

c

b

Figure B.7: Operation VI: Add a circle incident to both such that there is no triple
point. Such an operation takes a P3 and adds edges and vertices such that we get three
3-cycles sharing an edge. This is exactly the operation in Figure 6.9b, where we join the
ends of an incident chain of length two.

a
a

a c b

d

e

f

g

h

c

b

d

bc

d
e

f h

g

Figure B.8: Operation VII: Add a third which overlaps both and that creates two regions
with the same code.

a
a a

c

b

d

e f

c

b

d

bc

d

e f

Figure B.9: Operation VIII: A third which overlaps both such that we obtain two triple
points.
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a
a

a c b

d

e

f

gc

b

d

bc

d
e

f

g

Figure B.10: Operation IX: Add a third overlapping one and incident to the other with
no triple points.

a
a

a

c

b

d

e

f

c

b

d
bc

d

e
f

Figure B.11: Operation X: The above, but with a triple point.

a
a

a c b

d

e

f

c

b

d

bc

d

e

f

Figure B.12: Operation XI: Add a third incident to both, with both on the same side of
the new circle.
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a
a

a

c

b

d

e

fc

b

db

c

d

e

f

Figure B.13: Operation XII: Add a third incident to both, with the new circle being on
opposite sides of the overlapping pair.

a a

a

c

b

d

e

fc

b

d

bc

d e

f g

g

Figure B.14: Operation XIII: Add a third overlapping both such that we obtain a single
triple point.

a a

a c b

d

e

fc

b

d

bc

d e

f g

h

h

g

Figure B.15: Operation XIV: Adding a circle such that we get eight regions and no triple
points. Observe that this turns a 4-cycle into a cube graph.
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Appendix C

Code for generating region graphs

on circles

1 import numpy as np

2 from numpy import random

3 import matplotlib.pyplot as plt

4 import networkx as nx

5 from shapely.geometry import Point

6 from shapely.ops import unary_union , polygonize

7

8 def generate_circle(centre , radius , num_points =500):

9 """ Returns a shapely geometry for a circle of given centre and radius

."""

10 return Point(centre).buffer(radius , resolution=num_points), centre ,

radius

11

12 def generate_circles(n):

13 """ Generates n centres and radii to be converted to shapely

geometries."""

14 centres = 1.5 * random.rand(n,2) # Spread out along x-axis

15 radii = random.rand(n, 1)

16 centres_radii = []

17 for i in range(0, n):

18 centres_radii.append ([ centres[i], radii[i]])

19 return [generate_circle(centre , random.rand()) for centre in centres]

20

21 def compute_regions_with_outside(circles , buffer =10):

22 """ Finds the distinct topological regions within the arrangement of

circles ,

23 and returns them as shapely geometries."""
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24 boundaries = [circle.boundary for circle in circles]

25 merged_lines = unary_union(boundaries)

26

27 regions = [geom for geom in polygonize(merged_lines)]

28 return regions

29

30 def build_region_graph(circles):

31 """ Takes a collection of n circles , finds the topological regions

32 and then iteratively removes circles to check which regions are

33 adjacent in the corresponding region graph."""

34

35 # Adds a circle which allows us to add an "outside" region

36 circles [0]. append(Point([0, 0]).buffer (10, resolution =200))

37 circles [1]. append(np.array([0, 0]))

38 circles [2]. append (10)

39

40 # Finds regions

41 full_regions = compute_regions_with_outside(circles [0])

42

43 # Adds regions to region graph

44 G = nx.Graph()

45 for i, region in enumerate(full_regions):

46 G.add_node(i, shape=region)

47

48 # Removes a single circle and calculates new regions

49 for idx , removed_circle in enumerate(circles [0][: -1]):

50 remaining = []

51 for j, c in enumerate(circles [0]):

52 if j != idx:

53 remaining.append(c)

54 new_regions = compute_regions_with_outside(remaining)

55

56 # If a new region contains an old one , it must have merged with

another

57 for j, new_region in enumerate(new_regions):

58 merged = []

59 for i, old_region in enumerate(full_regions):

60 intersection = new_region.intersection(old_region)

61

62 # Accounts for imprecision of shapely geometries

63 if intersection.area / old_region.area > 0.98:

64 merged.append(i)

65
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66 # Add edges to the region graph between regions merged by

removal of this circle

67 for i in merged:

68 for k in merged:

69 if i < k:

70 G.add_edge(i, k, removed_circle=idx)

71 return G, full_regions , circles

72

73 def plot_regions_and_graph(G, regions , circles):

74 """ Plot the arrangement of circles , and label distinct topological

regions.

75 Also draw the corresponding region graph."""

76 fig , ax = plt.subplots ()

77 label_positions = []

78

79 # Plot the arrangement of circles

80 for i, circle in enumerate(circles [0]):

81 temp = plt.Circle(circles [1][i], circles [2][i], color="b", fill=

False)

82 ax.add_artist(temp)

83

84 # Colour and label regions , and add node to each region

85 for i, region in reversed(list(enumerate(regions))):

86 x, y = region.exterior.xy

87 ax.fill(x, y, alpha =0.5, label=f"Region {i}")

88 if i == len(regions) - 1:

89 ax.plot(-1, -1, marker="o", color="black", markersize =4)

90 label_positions.append([-1, -1])

91 else:

92 point = region.representative_point ()

93 ax.plot(point.x, point.y, marker="o", color="black",

markersize =4)

94 label_positions.insert(0, [point.x, point.y])

95

96 print("EDGES:", G.edges)

97

98 # Plot line between merged regions

99 for u, v in G.edges:

100 x1, y1 = label_positions[u]

101 x2, y2 = label_positions[v]

102 ax.plot([x1, x2], [y1, y2], "k-", alpha =0.5)

103

104 # Configure plot and display

105 ax.set_aspect("equal")
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106 ax.set_xlim (-1.5, 2.5)

107 ax.set_ylim (-1.5, 2.5)

108 plt.title(f"Region Graph of {len(circles [0]) -1} circles")

109 plt.show()

110

111 # Contains generated region graphs as nodes and edges

112 region_graph_list =[]

113

114 # Number of circles region graph is on

115 circle_num = []

116

117 # List of circles region graph is on , as centres and radii

118 circles_list = []

119

120 # Number of circles to generate region graph on , change the for loop

below to generate desired graphs. Currently set

121 # to generate 9000 region graphs on increasing number of circles. For 10

or more circles generation is fairly slow.

122 n=0

123 for i in range(0, 9000):

124 if 0 <= i <= 199:

125 n = 4

126 if 200 <= i <= 999:

127 n = 5

128 if 1000 <= i <= 1999:

129 n = 6

130 if 2000 <= i <= 2999:

131 n = 7

132 if 3000 <= i <= 3999:

133 n = 8

134 if 4000 <= i <= 4999:

135 n = 9

136 if 5000 <= i <= 5999:

137 n = 10

138 if 6000 <= i <= 6999:

139 n = 11

140 if 7000 <= i <= 7999:

141 n = 12

142 if 8000 <= i <= 8499:

143 n = 13

144 if 8599 <= i <= 8999:

145 n = 14

146

147 # Adds data to lists for export
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148 circle_num.append(n)

149 circles_temp = generate_circles(n)

150 circles_polygons = [[ circles_temp[j][0] for j in range(0, n)], [

circles_temp[j][1] for j in range(0, n)],

151 [circles_temp[j][2] for j in range(0, n)]]

152 circles_list.append ([[ list(circles_temp[k][1]) , circles_temp[k][2]]

for k in range(0, n)])

153 region_graph , regions , circles2 = build_region_graph(circles_polygons

)

154 region_graph_list.append(list(region_graph.edges))

155

156 # Prints most recently generated region graph and associated

information

157 print("Edges", region_graph.edges)

158 print("circle_layout", circles_list)

159 print(f"GENERATED {i}th GRAPH")

160

161 # Formats outputs for analysis in Mathematica

162 print(region_graph_list)

163 formatted = str(region_graph_list).replace("[", "{").replace("]", "}").

replace("(", "{").replace(")", "}")

164 formatted2 = "\n"+str(circle_num).replace("[", "{").replace("]", "}").

replace("(", "{").replace(")", "}")

165 formatted3 = "\n"+str(circles_list)

166

167 # Write to text file

168 with open("GraphsOutputRandom9000.txt", "w") as f:

169 f.write(formatted)

170 f.write(formatted2)

171 f.write(formatted3)

94



Bibliography

[1] Agelos Georgakopoulos. Circle graphs and the automorphism group of the circle,

2025. URL https://arxiv.org/abs/2501.07698. arXiv:2501.07698 [math.CO].

[2] Étienne Ghys. Groups acting on the circle. Enseignement Mathematique,

47(3/4):329–408, 2001. URL https://perso.ens-lyon.fr/ghys/articles/

groupscircle.pdf.

[3] Andrés Navas. Groups of circle diffeomorphisms. University of Chicago Press, 2011.

URL https://arxiv.org/abs/math/0607481.

[4] L A Beklaryan. Groups of homeomorphisms of the line and the circle. Topological

characteristics and metric invariants. Russian Mathematical Surveys, 59(4):599, aug

2004. URL https://dx.doi.org/10.1070/RM2004v059n04ABEH000758.

[5] Terry A. McKee and F. R. McMorris. Topics in Intersection Graph Theory. Society

for Industrial and Applied Mathematics, 1999. URL https://epubs.siam.org/

doi/abs/10.1137/1.9780898719802.

[6] Madhumangal Pal. Intersection graphs: An introduction. Annals of Pure and

Applied Mathematics, 4(1):43–91, 2014. URL https://arxiv.org/abs/1404.5468.

[7] Frédéric Le Roux and Maxime Wolff. Automorphisms of some variants of fine

graphs. Algebraic & Geometric Topology, 24(8):4697–4730, 2024. URL http://dx.

doi.org/10.2140/agt.2024.24.4697.

[8] Alan F. Beardon. The Geometry of Discrete Groups. Springer, 1983. URL https:

//link.springer.com/book/10.1007/978-1-4612-1146-4.

[9] Frederick W. Gehring, Gaven J. Martin, and Bruce P. Palka. An Introduction to the

Theory of Higher-Dimensional Quasiconformal Mappings. Mathematical Surveys

and Monographs, 2017. URL https://bookstore.ams.org/surv-216/.

95

https://arxiv.org/abs/2501.07698
https://perso.ens-lyon.fr/ghys/articles/groupscircle.pdf
https://perso.ens-lyon.fr/ghys/articles/groupscircle.pdf
https://arxiv.org/abs/math/0607481
https://dx.doi.org/10.1070/RM2004v059n04ABEH000758
https://epubs.siam.org/doi/abs/10.1137/1.9780898719802
https://epubs.siam.org/doi/abs/10.1137/1.9780898719802
https://arxiv.org/abs/1404.5468
http://dx.doi.org/10.2140/agt.2024.24.4697
http://dx.doi.org/10.2140/agt.2024.24.4697
https://link.springer.com/book/10.1007/978-1-4612-1146-4
https://link.springer.com/book/10.1007/978-1-4612-1146-4
https://bookstore.ams.org/surv-216/


[10] J. B. Wilker. Inversive Geometry. In Chandler Davis, Branko Grünbaum,
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